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Global pollinator decline urgently requires effective methods to assess their
trends, distribution and behaviour. Passive acoustics is a non-invasive and
cost-efficient monitoring tool increasingly employed for monitoring animal
communities. However, insect sounds remain highly unexplored, hindering
the application of this technique for pollinators. To overcome this shortfall
and support future developments, we recorded and characterized wingbeat
sounds of a variety of Iberian domestic and wild bees and tested their
relationship with taxonomic, morphological, behavioural and environmental
traits at inter- and intra-specific levels. Using directional microphones and
machine learning, we shed light on the acoustic signature of bee wingbeat
sounds and their potential to be used for species identification and monitor-
ing. Our results revealed that frequency of wingbeat sounds is negatively
related with body size and environmental temperature (between-species
analysis), while it is positively related with experimentally induced stress
conditions (within-individual analysis). We also found a characteristic
acoustic signature in the European honeybee that supported automated
classification of this bee from a pool of wild bees, paving the way for passive
acoustic monitoring of pollinators. Overall, these findings confirm that insect
sounds during flight activity can provide insights on individual and species
traits, and hence suggest novel and promising applications for this
endangered animal group.

This article is part of the theme issue ‘Towards a toolkit for global insect
biodiversity monitoring’.
1. Introduction
Bees (Hymenoptera: Apoidea) are considered the most important group of
pollinators [1,2]. With over 20 000 species worldwide, these flying insects
play a crucial role in ecosystem services, food security and sustainable develop-
ment [3]. However, surveys in North America and Europe have reported
negative trends in the population of bees and other relevant pollinators (e.g.
syrphid flies) during the past decades [4,5], associated with different anthropo-
genic drivers, such as habitat loss and fragmentation, climate change or
agricultural intensification [6–8]. This global decline calls for developing scal-
able, inexpensive and efficient methods to monitor behaviour and trends of
bee communities.
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Commonly studied in a variety of vertebrate and invertebrate species, animal sounds are a well-established source of ecological
information [9] that can reveal species presence, abundance, position, body size or behavioural status [10]. Thus, passive acoustic
monitoring (PAM) has become an emerging technique that is used to record, store and analyse animal sounds in an automated,
non-invasive way [11]. In combination with computational tools, PAM has proven to efficiently record animal activity for a wide
variety of subjects, e.g. population density [12,13] and distribution [14], conservation [15] or climate change research [16,17]. PAM
is typically aimed to record well-known species-specific acoustic signals that are emitted by specialized sound-producing struc-
tures and play a role in mating, resource defence or navigation [18].

In comparison with birds, bats or anurans (animal groups extensively studied with PAM; [11]), bees do not possess specialized
sound-producing structures but emit incidental sounds that arise as a by-product of activities such as moving or eating [19], e.g. a
diverse suit of pitches generated by rhythmic thoracic oscillations (see review by [20]). Some of the most well-known examples
of bee sounds are emitted during different behaviours of social species, such as honeybees, bumblebees or some stingless bees
[20–23], and they are usually exclusive to certain families, genus or species (e.g. buzz pollination, see [24]). There is, however,
one sound type found across all bee species: the flight buzz.

Bees’ flight and its associated sounds have been theoretically studied since the 1960s [25–27]. More recently, applied studies
have shown that wingbeat frequency and pattern during flight may be species-specific, and thus these could serve as a ‘fingerprint’
for automatic species classification [28,29]. However, most studies on this topic have been performed in laboratory settings, with a
narrow number of species (e.g. only Bombus sp. or Apis mellifera), or without considering morphological (e.g. body size) and
environmental (e.g. temperature) factors [30,31].

For PAM to be a reliable tool to remotely monitor bee communities, it is paramount to detect which are the most relevant
factors affecting the variability of wingbeat sounds between and within species. Here we recorded and characterized wingbeat
sounds of a variety of Iberian bees under field conditions and tested their relationship with species and individual traits. Particu-
larly, we investigate four sources of inter- and intra-specific variation in sound frequency (taxonomy, morphology, temperature and
behaviour) and hypothesize that: (i) each taxa shows a specific wingbeat acoustic signature; (ii) frequency of wingbeat sounds is
negatively correlated with body size, and positively correlated with (iii) air temperature and (iv) induced stress. Thereby, we exam-
ine the information that can be retrieved from bees’ wingbeat sounds of and assess the applicability of PAM to investigate bee
diversity, morphology and behaviour through their sounds.
2. Material and methods
(a) Study area
The study was conducted in three farmlands located in Central Spain (Torrelaguna and La Cabrera, Madrid), between 600 and 1200
metres a.s.l., at the southern side of the mountain range Sierra de Guadarrama (see electronic supplementary material, figure S1 for
farm pictures). These areas belong to the mesomediterranean bioclimatic layer, characterized by highly variable temperatures (mean
annual temperatures between 12°C and 17°C) and moderate rainfall (annual precipitation of 500 mm; [32,33]).

(b) Sound recording and insect sampling
To record their sounds, we actively searched for bees in the three farmlands from May to July 2019, during a total of 8 sampling days.
Fieldwork was conducted between 9:30 am and 1:30 pm in warm days, with clear sky, little wind and no precipitation. To increase
the diversity of sampled species, the active search was oriented to maximize the selection of specimens with different characteristics,
by in-situ observation of the size, colour and shape of the flying insects. Additionally, we focused on individuals of the European honeybee
(Apis mellifera), the most abundant bee species in the study farmlands, to explore the intra-specific variability of their sounds. Each speci-
men was recorded under two treatments: (i) in natural conditions (NC) during free-ranging flight manoeuvres between flowers before
capture; and (ii) subjected to an experimentally induced stress (IS) after capture, while being confined inside the entomological net.

We recorded wingbeat sounds of the focal bees with a directional microphone (ME-66 and module K6; Sennheiser) connected to a
portable digital audio recorder (PMD-660 Marantz Professional). During recordings, the tip of the microphone was placed at a distance
of 2–5 cm above the thorax of the insect to correctly register the sound without disrupting its behaviour ([34]; see electronic supplementary
material, figure S2 for a graphic visualization of the recording protocol). To increase the signal-to-noise ratio, the audio gain of the recorder
was manually regulated while continuously tracking sound amplitude. We used a shock-mount to avoid stand-borne noise, a windshield
to reduce excessive pressure from wind and headphones to properly perceive the sound source. The recordings were stored as
uncompressed .wav files and digitalized at a sampling rate of 48 kHz and a depth of 16 bits. All sound files were deposited in the Fonoteca
Zoológica of the Museo Nacional de Ciencias Naturales (MNCN-CSIC, Madrid, Spain).

During sampling, air temperature was measured with a datalogger (HOBO U23 Pro V2, ONSET), located at 20–30 cm from the floor in
a shaded area. Every specimen was euthanized in a small plastic vial (33 cm3) with 70% alcohol to ensure their proper conservation.
Individuals were then carefully dried and labelled for subsequent taxonomic identification and morphological measurement.

(c) Acoustic analysis
We created and visualized spectrograms of the recorded sounds using the Raven Pro v. 1.5.0. software (Cornell Lab of Ornithology;
figure 1; electronic supplementary material, figure S3). An optimal spectrogram configuration was applied to all the recordings
(window size: 4098; Overlap: 90%; window type: Hann), providing a high resolution of wingbeat sound frequencies. For each individual
and treatment, a single audio with the best signal-to-noise ratio was selected and three acoustic parameters measured for both the funda-
mental harmonic (i.e. the lowest frequency of a periodic wave; [35]) and the second harmonic. These parameters were: duration (s),
dominant frequency (Hz) and maximum energy (dB). To best characterize between- and within-bee variation in sound frequency through-
out the individual displacement, we also measured dominant frequency and maximum energy in a short segment at the onset, centre
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Figure 1. Spectrogram visualization of three collected individuals from different species: (a) Megachile (Megachile) octosignata, (b) Xyllocopa cantabrita and (c) Apis
mellifera. Each spectrogram shows an example of (a) sharp, (b) moderate and (c) restricted frequency modulation. The spectral component observed at a frequency
of 5 Hz in the third spectrogram corresponded to environmental noise.
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and end of the selected audio (electronic supplementary material, figure S2). The duration of each segment corresponds to ca 10% of the
duration of the entire audio. Based on these measurements, we calculated how often sound energy was higher at the fundamental har-
monic than at the second one. By pairwise comparisons of energy in harmonics of the same segment, we thus estimated a within-bee
percentage of audio segments with dominant frequency in the fundamental harmonic.

(d) Trait measurements
We measured two morphological traits from the focal specimens: the intertegular distance (ITD), defined as the minimum linear distance
between both tegulae, measured over the thoracic dorsum [36], and the average forewings length (WL; electronic supplementary material,
figure S4). Both morphological traits are considered good proxies for body size [37,38]. For these measurements, photographs of every
specimen were taken over a millimetre scale, using a digital camera Canon EOS M10 (Canon, Tokyo, Japan) adjusted to an optical micro-
scope Leica MZ6 (Leica, Wetzlar, Germany), ranging between 0.8x and 4x magnifications. The length in millimetres was measured with
the software Image J [39]. When one of the two wings was deteriorated or absent, the average between two measurements of the other
wing was calculated.

(e) Regression models
To examine factors that influence inter- and intra-specific variation in the dominant frequency of wingbeat sounds, we used general linear
mixed-effect models (LMM), with Gaussian error structure, including dominant frequency as response variable, and morphological, environ-
mental and behavioural factors as explanatory variables. Specifically, we fitted twomodels: (i) a LMM at inter-specific level, using all recorded
individuals, and (ii) a LMM at intra-specific level, with only specimens from themost abundant species, the domestic bee (A. mellifera). In each
model, we included seven fixed factors: WL (mm), ITD (mm), temperature (°C, linear and quadratic terms, to account for potential linear and
curvilinear relationships), experimental treatment (NC versus IS), audio segment (4 levels; entire, onset, centre and end), harmonic type (fun-
damental versus second) and family (Andrenidae, Apidae, Halictidae and Megachilidae). Additionally, we added individual identity as a
random factor in both LMMs to account for repeated measures within individuals, and species and genus as random factors in the inter-
specific model to evaluate the amount of variation explained by these factors. As ITD and WL were correlated at inter-specific level, we
first fitted a linear regression with both variables at inter-specific level (log10-transformed to achieve linearity) and used WL and statistically
controlled ITD (residuals of the regression) as explanatory variables in the LMMmodel to avoid collinearity. All continuous variables (WL, ITD
and temperature) were centred and scaled (mean of 0 and standard deviation of 1) to facilitate model fitting.

We checked the assumptions of normality andhomogeneity of the residuals by visually inspecting a quantile–quantile plot and the residuals
against the fittedvalues,both indicatingnodeviation fromthese assumptions.We inspectedmodel stability byexcludingdatapoints oneat a time
from the data. We derived variance inflation factors [40] using the function vif of the R-package car (v. 2.1-4; [41]) and they did not indicate
collinearity between fixed effects to be an issue. We conducted all analyses in R using the lmer function of the R-package lme4 (v. 3.1-139).

( f ) Classification analysis
To visualize and test for inter-specific differences in wingbeat sounds, we created density scatter plots with dominant frequency and
flight time as axes, and taxonomic entities as grouped variables. Among all measurements of dominant frequency, we chose the funda-
mental frequency at the centre of the recorded audio to avoid the Doppler effect (compared with onset and ending segments). Acoustic
segregation between species, genus or families was then explored based on sound properties.

Additionally, we applied a machine learning framework to test if wingbeat sounds encode species-specific acoustic signatures that can be
used for automated acoustic species identification. As a first approach, we focused the identification test on discriminating thewingbeat sounds
produced bya domestic bee (A.mellifera) from those ofwild bees (17 species). For this purpose,we only selected recordings of the first treatment
(under natural conditions, NC) andwithmoderate and high signal to noise ratio (SNR≥ 15 dB). This led to a filtered database, including 18 bee
species and 42 audio recordings, with a balanced distribution of classes (22 and 20 recordings from domestic and wild bees, respectively).

First, we characterized the audio samples in the spectral domain by computing the power spectrum. This spectral representation
allowed us to compare visually the spectral differences between classes. To have tight representation of the spectral domain, we then
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computed mel-frequency cepstral coefficients (MFCC). MFCCs have been used as the dominant features used for audio classification
because they have the ability to deliver a compact representation of sounds with high harmonic content, such as speech and
music [42]. In particular, we used 20 coefficients extracted between the frequency band where the wingbeat sounds and the harmonics
were predominant (i.e. 0.1 and 5.0 kHz). The final predictor matrix included 20 MFCC coefficients and 42 observations. We measured
binary classification performance using a Random Forest classifier (number of trees = 300, maximum features = 6) and computing the
balanced accuracy metric in a stratified 10-fold cross-validation scheme. To assess whether the accuracy of the machine learning model
was significantly better than expected by chance, we computed baseline accuracies using two dummy classifier strategies: majority
and random. The majority strategy simulates a classifier always returning the most frequent class, which, in our case, is Apis mellifera.
The random strategy generates predictions uniformly at random. The automated classification analyses were performed in Python 3,
using the package librosa [43] for audio characterization, and the package scikit-learn [44] for fitting and evaluation of statistical classifiers.
journal/rstb
Phil.Trans.R.Soc.B

379
3. Results
(a) Taxonomic and morphological traits
Overall, 73 beeswere registeredand captured, and65 of them identified at species level (electronic supplementarymaterial, table S1). The
taxonomic identification revealed 27 species, belonging to 4 families: Apidae (42 individuals; 57%), Andrenidae (15; 21%) Halictidae (9;
12%) and Megachilidae (7; 10%). European honeybee (Apis mellifera) was the most commonly collected species, with 26 registered indi-
viduals (36%). Our dataset included 16 species andone subgenus, and one genuswas represented bya single specimen. The averageWL
was 8.84 mm (±2.39) and varied between the 2.73 and 17.73 mm, while the average ITD was 2.93 mm (± 0.97) and varied between 0.76
and 6.52 mm (electronic supplementary material, table S1). Temperature was 24.04°C (±10.63) and ranged between 16.25 and 41.39°C.
 :20230111
(b) Bee sounds
Wingbeat sounds were analysed in 69 individuals under NC treatment and 71 individuals under IS treatment. These sounds were
highly variable and characterized by a large number of harmonics (1–12), with sharp, moderate or restricted frequency modulation
(figure 1). Sound energy of the harmonics typically decreases with frequency (i.e. lower harmonics having higher energy),
although some individuals did not follow that pattern. Duration of bee flying between flowers ranged from 1.9 s (± 1.3) in
wild bees to 2.1 s (± 0.8) in the European honeybee. The fundamental frequencies of sounds produced by this domestic bee (at
the centre of the audio segment) were on average 222.4 Hz (± 21.4) and 251.3 Hz (± 15.9) under NC and IS treatments, respectively.
In wild bees, the fundamental frequencies were on average 180.3 Hz (± 50.9) and 195.5 Hz (± 95.7). The fundamental harmonic
was higher in energy than the second harmonic for 80% of the time for all observations, and 90% of the time for the IS treatment
(electronic supplementary material, table S2). In general, the dominant frequency and patterns of frequency modulation were dis-
tinct across specimens and might be good candidate parameters for acoustic species identification (see electronic supplementary
material, figure S5). The greatest intensity of background noise occurred between 0 and 70 Hz.
(c) Determinants of wingbeat sounds at inter- and intra-specific level
Using the full dataset (n = 138 individuals, 27 species), the first LMM model revealed that frequency of bee sounds was related to
wing length bound to harmonic, as well as experimental treatment (NC versus IS) and air temperature (electronic supplementary
material, table S3; figures 2 and 3). Lower frequencies were emitted by larger-sized bees and individuals subjected to higher temp-
eratures, while stress was associated with high-pitched sounds. We also found significant differences in dominant frequency
among the bee families and the audio segments within the recording (electronic supplementary material, table S3). Using the
subset for the European honeybee (n = 26 individuals), the second LMM model indicated that the frequency of wingbeat
sounds of this species was also associated with its behavioural status, with higher-pitched sounds under stress conditions (elec-
tronic supplementary material, table S4). We also found significant differences in dominant frequency among the harmonics and
the audio segments within the recording (electronic supplementary material, table S4, figure 2).
(d) Inter- and intra-specific acoustic signatures
The power spectrum of wingbeat sounds of the European honeybee showed multiple consistent peaks at low frequencies
(figure 4a) that were only masked by the background noise at higher frequencies. Conversely, the mixed set of wingbeat
sounds of wild bee species were highly variable and did not show a clear signal (figure 4b). Our statistical analyses on the dis-
crimination between these sounds showed that the Random Forest classifier had an average balanced accuracy of 0.77 ± 0.12,
over 10 cross-validation runs. The baseline accuracies obtained were 0.50 (±0) for the majority strategy and 0.47 (±0.21) for the
random strategy, showing that our model’s accuracy is significantly better than chance. The main classification errors (false posi-
tives and false negatives) were observed on the noisier samples. This suggests that the wingbeat sound of the European honeybee
has a specific acoustic signature and machine learning could be used to automatically discriminate between domestic and wild bee
species.

The recorded sounds were distinct in frequency and duration across genus and families, with some level of overlap between
groups (figure 5). We found no significant differences in dominant frequency at the centre of the audio segment (F = 0.11; df = 2;
p = 0.89) among the three taxonomic levels, calculated by themean differences in frequency between pairs of species (mean ± standard
deviation: 57.6 Hz ± 43.6), genus (59.9 Hz ± 44.3) and families (58.3 ± 43.8 Hz).
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4. Discussion
Animal sounds have the potential to provide a large amount of inter- and intra-specific information and to assist researchers
in monitoring species activity and diversity [9–11]. Bee sounds have as yet received little attention compared to other groups,
despite their diversity and potential for aiding species’ automatic classification [20,45]. At the inter-specific level, we found
that variations in the frequencies of wingbeat sounds emerged from taxonomic, morphological, environmental and behav-
ioural differences of a pool of 27 domestic and wild bee species. First, we confirmed a negative relationship between
the dominant frequency of these sounds and the wing length of the recorded specimens, in agreement with the general allo-
metric pattern that predicts lower sound frequencies in larger-sized animals. Second, we found a negative relationship
between dominant frequency and environmental temperature. Finally, we demonstrated that bee behaviour also influences
wingbeat sounds, with bees under experimentally induced stress conditions (in a net trap) emitting higher-pitched sounds
than bees under natural conditions (in free-ranging movements). At the intra-specific level, wingbeat sounds of the European
honeybee exhibited a consistent acoustic signature and limited variations: only behaviour was a significant determinant of
sound frequency.
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(a) Wingbeat frequency
The scientific community’s interest in studying thewingbeat sounds produced by flying insects is increasing owing to their potential
to support species identification, with applications in pest control or biodiversity monitoring [38,46]. In this study, we characterized
wingbeat sounds of domestic andwild bees with acoustic methods under field conditions. The fundamental frequency of the sounds
produced by the European honeybee (Apis mellifera) was on average 222.4 ± 21.4 Hz (± standard deviation; n = 26 specimens), which
is similar to the frequency observed in previous studies with smaller samples (e.g. 235.2 ± 7.5 Hz, n = 10, [47]; 238.2 ± 4.57 Hz, n = 10,
[48]), while the wingbeat sounds of wild bees were on average lower-pitched (180.3 Hz ± 50.9).

It is worth mentioning that wingbeat sound frequencies could significantly vary depending on the insect flight pattern:
whether it is sustained (hovering flight) or it goes in a specific direction [49]. Apart from these flying patterns, other factors
such as temperature or the load imposed on the motor system could be influencing the vibrational system [25,50]. The sound pro-
duced is even trickier to study in certain taxa such as flies, where the wings do not only move from up and down, but also undergo
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deformations, rotations and speed variations [51,52]. Thus, larger databases are needed to better determine the spectral patterns of
wingbeat sounds in flying insects.
(b) Morphology and bee sounds
As in other animal groups, there is a certain consensus that the frequency of sounds emitted by insects (also wingbeat sounds) is
negatively correlated with their body size [34,53–55]. A larger-sized individual typically has larger wings and hence produces
higher forces, which end up reducing the number of wingbeats they need to fly [38]. This is also consistent with previous studies
in individuals of the Euglossini tribe, bumblebees and orchid bees [55–57], but opposite to some studies in mosquitos (e.g. [58]).
Our results, which include several solitary species as well as social bees, are still in line with this allometric pattern, supporting the
belief that bees with longer wing length emit lower sound frequencies. In contrast with wing length, ITD did not show a clear
relationship with wingbeat sounds, suggesting that the former morphological trait could be a better predictor of body size,
and thus wingbeat sounds, than the latter one.

At the intra-specific level, neither of the two functional traits were related to the sound frequency emitted by the European
honeybee, contrary to what was expected according to our hypothesis. This, however, aligns with Kendall et al. [59], because
they found no significant correlations between ITD and dry weight (an alternative indicator of body size) in this species.
(c) Environmental temperature
Temperature is a pervasive factor influencing physiology and behaviour of ectotherms, such as flying insects [60]. Previous studies
often found that increases in wingbeat fundamental frequency were correlated with increases in environmental temperature, e.g. in
various bees and flies [26,61] or in mosquitos [58]. However, this is not always the case. In larger bees, air temperature can be
negatively correlated with wingbeat frequency. As bees significantly differ in body size, ranging from a few mm to more than
20 mm, body temperature in larger-sized insects could substantially deviate from environmental temperature, hence attenuating
such a relationship [26,31]. Actually, we found a negative correlation between wingbeat frequency and temperature at both the
inter- and intra-specific levels, opposite to the effect that is most commonly observed. Other studies have also shown that
social bees such as Apis mellifera are capable of controlling their wingbeat frequency regardless of external temperature [31].
Even, Sotavalta [61] did not find differences in Bombus pascuorum wingbeat frequency over a wide temperature range, while Span-
gler & Buchmann [50] did not consider temperature as an important factor affecting wingbeat frequency in social and non-social
bees. Other factors, such as individuals’ sex, can also be playing a role in wingbeat frequency [62]. Our results are aligned with this
diversity of relationships between temperature and wingbeat frequency that are reported in the literature, and suggest that the
effect of temperature on wingbeat frequency may be taxa-specific and that generalizations on this link are still elusive owing to
the scarce amount of data available so far.
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(d) Under stress conditions
When the European honeybees’ flight was recorded under induced stress conditions (within an entomological net), the dominant
frequency of their wingbeat sounds increased by 25 Hz in comparison with those under natural conditions. This shift may indicate
an effect of stress on the frequency of these flight sounds, as a behavioural response to the context. Sounds emitted from bees’
defensive behaviours, alarm signals or other intra-specific communication mechanisms have been previously reported in literature
[20,21,24,63]. For instance, the African stingless bee Axestotrigona ferruginea produces frequent guarding signals to alarm nestmates
[64]. However, during these behaviours, insects are typically lying on a surface and their wings are folded over the thorax,
uncoupled from the indirect flight muscles. Thus, the vibrational response of these non-flying individuals is different
(e.g. higher-pitched) from that of the flying individuals recorded in this study [21,65]. To the best of our knowledge, no other
study has shown stress-related sounds in flying individuals. Our findings suggest that there is plenty of room to explore the
diversity of bee sounds associated with different flying and non-flying behaviours.

(e) Acoustic species-level identification
Our Random Forest-based models proved effective at classifying wingbeat sounds between domestic (Apis mellifera) and wild bee
species, evidencing the potential of bee flight sounds to support automated acoustic identification. Our results are in line with
previous studies using machine learning approaches in other insect groups. For instance, Kawakita & Ichikawa [29] successfully
identified three species of bees (Apis mellifera, Bombus ardens and Tetralonia nipponensis), and a hornet (Vespa simillima xanthoptera)
using the fundamental frequency of their flight as a variable [29]. Li et al. [66] managed to classify five species of mosquitoes based
on their sounds, with a success rate of 73%. Similarly, Yin et al., [67] successfully detected and classified several mosquito species
with wingbeat sounds using computational techniques. Folliot et al. [68] also monitored pollination by insects and tree use by
woodpeckers with acoustics methods and artificial intelligence. Other studies that did not rely on wingbeat sounds but on measur-
ing wingbeat frequency with laser sensors have also demonstrated the good potential of this related parameter for taxonomic
identification of insect pests [28,69].

According to our results, acoustic classification of bees based on their wingbeat sound entities seems to be possible in some
cases, but might be hindered by species overlap. The wingbeat sounds are quiet and thus difficult to record. Our findings
show that improving signal-to-noise ratio of audio samples may further increase the accuracy of the automated classification.
The design of techniques to better capture such sounds in the field and increasing the sample size of training datasets for statistical
classifiers will likely contribute to the efforts of developing new methods for monitoring pollinating species in a non-
intrusively and efficient way [70]. It is also important to highlight that our study, which aimed to distinguish Apis mellifera
from other wild bee species, employed handcrafted features owing to the availability of samples. While our Random Forest-
based models demonstrated commendable classification performance, we acknowledge the existence of more advanced methods,
particularly the use of deep learning models for classifying bee species based on wingbeat sounds [45,71]. These advanced
methods have demonstrated highly accurate classification results, especially when provided with a larger dataset.

Next steps should also be oriented towards: (i) the documentation of acoustic diversity of these sounds, including a fine
analysis of their determinants, which will overcome the current lack of knowledge, (ii) the creation of sound libraries that support
the future development of species classification algorithms, and (iii) testing of alternative machine learning techniques for the
automated analysis of wingbeat sounds in flying insects.
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