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Glossary
Compressional wave Wave in which the particle motion is parallel to the direction of propagation. Compressional waves
include body waves, also called P waves, that propagate in 3-D solids.
Cue Modification of the environment produced incidentally by an animal’s behavior.
Extended phenotype External production of an organism, resulting from a specific behavior, such as a spider web or honey
combs.
Frequency Number of cycles per unit of time in a signal. It is typically measured in Hz. High frequency sounds correspond to
high pitched sounds; conversely, low frequency sounds are low pitched.
Shear waveWave for which the particle motion is perpendicular to the direction of propagation. Shear waves include Rayleigh
waves (in 2-D substrates), bending waves (1-D substrates), and transverse waves (1-D substrates).
Signal Modification of the environment produced by an animal’s specialized behavior; i.e., behavior that has evolved under
selection relating to the effect that the signal has on the behavior of receivers.
Wave Mechanical disturbance of a medium.

Abstract

Sound – A mechanical disturbance of a medium perceived by an organism – encompasses a bewildering variety of forms of
communication and sensation. One of the more exotic, for the human worldview, is sound transmitted through solid
substrates on which organisms stand, such as the ground or the stems and leaves of plants. Perception of substrate-borne
sounds is widespread among animals, and many groups have evolved to use them in a huge variety of contexts and func-
tions. Research on this modality of sensation and communication is revealing surprising capabilities for signal processing and
cognition in animals large and small, social and solitary.

Keywords
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Introduction

Watch an aggregation of insects on a plant for any amount of time and you will likely think that not much behavior is going on
(Fig. 1). They do not seem to move a whole lot, and there are no sounds to be heard. At most there might be some chemical
signaling and some feeding. These impressions would also seem to agree with the apparent simplicity of their lifestyle, their
home and food right underfoot. And if they are spiny or camouflaged, their defensive strategy would also seem to rely on staying
put and doing nothing. These impressions are often wrong.

Those insects are likely to be interacting in a modality of sound that is alien to us, using substrate-borne vibrations to commu-
nicate. These vibrations are a form of sound, because they constitute a mechanical disturbance of a medium (Greenfield, 2002).
However, they are sounds that are transmitted through solids, rather than through a fluid such as air or water.

The medium of transmission is not the only surprising thing about substrate-borne vibrational signals. Insect vibrational signals,
for instance, often present dramatic contrasts with the insect airborne sounds that are familiar to us. On a typical summer day
almost anywhere near nature you may hear the comforting songs of cicadas in the distance – repetitive in structure, broad in
frequency content and favoring the high frequency range. By contrast, close relatives of cicadas, such as treehoppers, produce
substrate-borne signals with remarkably low and pure tones that sweep in frequency and have complex temporal patterns
(Fig. 2). The world of substrate-borne sound includes simple repetitive signals, but its high end of complexity rivals the elaborate
songs of birds and whales.

The diversity of substrate-borne signals in animals covers many dimensions. They are taxonomically widespread; they are used in
a broad range of behavioral contexts and for multifarious functions within and between species; and they are transmitted through
varied kinds of substrate as varied types of wave. Research on substrate-borne signals – a component of the growing field of bio-
tremology (Endler, 2014; Hill and Wessel, 2016) – promotes a confluence of technological innovation, experimental creativity,
and natural history exploration that offers great opportunities for discovery.
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Fig. 1 Aggregation of Antiante expansa treehoppers (Hemiptera: Membracidae) on one of their host plants, Acnistus arborescens (Solanaceae).These
insects communicate with plant-borne vibrational signals both as nymphs and as adults. Photo courtesy of Gerlinde Höbel.

Fig. 2 Comparison of the airborne and substrate-borne signals of two insects. (a) Airborne signal of a male Cicada orni cicada (Hemiptera: Cicadi-
dae) (recording courtesy of Sonothèque of the Museum national d’Histoire naturelle, https://sonotheque.mnhn.fr/). (b) Substrate-borne vibrational
signal of a male Enchenopa sp. treehopper (Hemiptera: Membracidae) (recording courtesy of R. Cocroft). We show signal waveforms (bottom traces)
and spectrograms (top traces). Note the much greater complexity in the frequency structure of the substrate-borne signal, and the longer span of the
basic signal “unit” (in four seconds there are 26 units in the cicada signal, but only 1 on the treehopper signal).
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Substrates and Waves

Animals send vibrational signals through a huge variety of substrates. Some of the best studied cases feature plant-feeding insects
that communicate with plant-borne vibrational signals (Cocroft and Rodríguez, 2005). Plants are complex environments from
the view point of transmission of vibrational signals. For instance, the signal frequencies that are transmitted with the least atten-
uation vary among plant parts (e.g., stems versus leaves) and plant species (McNett and Cocroft, 2008). Consequently, the signals
of some animals may be adapted for transmission along specific substrates when most of the signaling happens on particular
parts of particular plant species at particular times (McNett and Cocroft 2008), whereas the signals of others may be adapted
for transmission in a variety of substrates if the individuals of the species signal on a range of sites and conditions. The noise
induced by wind and rain is a major feature of a plant’s “soundscape”. Wind moves plant parts and strikes them against each
other making a huge racket, as do the strikes of rain drops, and animals seem to deal with these noises by ceasing to signal
when they reach high levels or congregating at sites where their impact is lower (Cocroft and Rodríguez, 2005; McNett et al.,
2010; Tishechkin, 2013; Virant-Doberlet et al., 2014). Additional sources of selection on plant-borne communication systems
may come from airborne sounds that are picked by plant tissues – the variety of such sounds and the fidelity with which they
are imparted onto plants is remarkable (Cocroft and Rodríguez, 2005; Eriksson et al., 2011; Rebar et al., 2012). To a more limited
extent, this is also true for sounds carried through the soil and picked up by plants (�Cokl et al., 2006). For animals using plant-
borne communication, those sounds may represent noise, but also opportunities for detecting dangers approaching the plant
from the air. For example, the flight noise of an approaching predatory wasp is perceptible to an aggregation of insects through
plant tissues.

Other animals communicate with substrate-borne signals on soil, rocks, sand, or leaf litter, as well as on animal-constructed
extended phenotypes, such as honeybee combs and spider webs (Hill, 2008). Some species specialize on only one or a few
kinds of substrates. For example, a web spider that courts with web vibrations will only ever signal on the highly-
predictable and stereotyped substrate constituted by the web of its potential mate. Other species have occasion to use multiple
substrates. Males of some spiders, for example, signal on different types of substrate (e.g., rocks, sand, and leaf litter for Hab-
ronattus dossenus jumping spiders, or leaf litter, pine litter, and clay for Schizocosa retrorsa wolf spiders), performing the same
courtship behaviors across substrates; however, the signal-transmission properties of the substrates vary considerably, and
courtship success varies across them (Elias et al., 2004; Hebets et al., 2008). This suggests that even such “generalists” may
be selected to specialize on a subset of the substrates available; alternatively, they may be selected to use signals that perform
well across substrates, which may involve the incorporation of signal components in other modalities (e.g., visual) (Elias and
Mason, 2014). Environmental sources of noise such as wind and rain are also important features of all of these soundscapes –
not only as sources of selection on communication, but also as potential masks for approaching predators, which may evolve
to exploit such opportunities (Wignall et al., 2011) or even mimic the noises (Tarsitano et al., 2000). Some of these substrates
(e.g., leaf litter) also pick up airborne sounds that influence vibrational communication; e.g., by delaying the onset of courtship
(Gordon and Uetz, 2012).

The variety of substrates on which vibrational signals are transmitted is matched by the variety of wave types that constitute the
signals (Greenfield, 2002; Hill, 2008; Mortimer, 2017). Roughly speaking, animals that produce vibrational signals from inside the
substrate (say, from below the soil) produce “body waves” (also termed “compressional waves” or “P waves”) that propagate spher-
ically from the source. Animals that signal on a surface (e.g., a fiddler crab on wet sand) produce Rayleigh waves that propagate
radially on a two-dimensional plane from the source. And animals on plate-like or rod-like structures such as plant leaves and stems
produce bending waves that propagate longitudinally away from the source.

The geometry and heterogeneous composition of the substrates, and the different wave types involved, constitute different
selective environments for signaling. For example, for signals that propagate in two or three dimensions (e.g., Rayleigh waves
and P waves), signal energy content decreases in proportion with the distance from the source, whereas such decrease is weaker
or absent for bending waves (Mortimer, 2017). On the other hand, bending waves exhibit “dispersion”, whereby different
frequencies propagate at different speeds along the substrate (higher frequencies propagate faster), whereas other wave types
do not show dispersion or do so only in particular conditions and types of substrate (Mortimer, 2017). Additionally, in many
substrates, signalers produce – and receivers need to process – multiple wave types (Casas et al., 2007; Elias and Mason, 2014;
Mortimer, 2017).

Regardless of the types of substrate and wave involved, there are some common functions and challenges to vibrational
communication. For instance, most if not all cases entail localizing specific individuals and distinguishing friend from foe,
or preferred from disliked individuals (and all those from noise). Given the complexity of the environments and the wave
forms involved, it is astonishing that animals would be able to accomplish this, and yet accomplish it they do
(Virant-Doberlet et al., 2006; Guedes et al., 2012). How they manage is a flourishing area of research (Gibson and Cocroft,
2018) with the potential to bring great insight into the field of auditory scene analysis (Miller and Bee, 2011; Bee and Miller,
2016). In the vibrational realm, this field is in its early days, in part because of the recency of the rise to attention of this
modality (Ossiannilsson, 1949; Michelsen et al., 1982; Henry, 1994; �Cokl and Virant-Doberlet, 2003; Virant-Doberlet and
�Cokl, 2004; Cocroft and Rodríguez, 2005; Hill, 2008); and because some key questions in vibrational communication present
substantial methodological challenges (McNett et al., 2006; Cocroft et al., 2014; Elias and Mason, 2014; Gibson and Cocroft,
2018).
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The Features of Substrate-Borne Signals

Above we referred to the sound of cicadas as agreeable from a distance, but up close they are ear-splittingly loud. High energy
content is a major feature of animal airborne sounds. It is quite common for airborne acoustic signals to have sound pressure levels
of 80–100 dB SPL (for reference, quiet conversation occurs at 70 dB SPL, and note that this is a logarithmic scale). This reflects selec-
tion on signals to reach a wide range of receivers, and presents the challenge to small animals (such as insects) of maximizing the
energy they radiate onto a large volume of air (Bennet-Clark, 1998; Gerhardt and Huber, 2002). There are exceptions, with some
airborne signals having remarkably low amplitudes, as the advertisement signals of whispering moths (Nakano et al., 2009), or
some forms of aggressive song in birds (Searcy et al., 2014). But airborne signals are largely selected to have high amplitude and
radiate broadly.

By contrast, substrate-borne signals are often very low in energy, commonly involving minute movements of the surface of plant
stems that propagate at low speeds (Cocroft and Rodríguez, 2005). This observation is often juxtaposed with another: the space
occupied by potential receivers of substrate-borne signals is frequently small, restricted for example to the insects on a bush (Cocroft
and Rodríguez, 2005). There are of course exceptions, as with the exceptional reach of potential vibrational signals in elephants
(O’Connell-Rodwell et al., 2000, 2001), but such cases seem to be rare. A third common feature is that substrate-borne signals often
exhibit remarkable complexity, as noted above (Fig. 2). This is all the more striking when it involves small animals with small
brains, as it often does.

Are these juxtapositions a coincidence? Or is there something about the relative lack of selection for large-volume radiation that
frees animals to realize the behavioral complexity of which they are capable? Imagine that the repetitiveness of airborne insect
signals, for instance, is designed to optimize transmission and detection in large noisy spaces (Guilford and Dawkins, 1991) rather
than reflect constraints on cognitive abilities and behavioral complexity. This is not to ignore the high levels of noise in the substrate
channel (see above). But perhaps there may be different dynamics, given common communication distances and noise patterns
(Cocroft and Rodríguez, 2005), that explain the differences in energy levels and complexity.

Another potential connection with the complexity of substrate-borne signals may lie in their often having low, near-pure tone
frequency composition (Cocroft and Rodríguez, 2005) (see for example Fig. 3). This is associated with a considerable lowering of
the intercept of the relationship between body size and signal frequency that occurs in the substrate-borne channel, possibly from
the lack of necessity to radiate sounds broadly (Cocroft and Rodríguez, 2005; Cocroft and De Luca, 2006; Lubanga et al., 2016). The
explanation is probably more complex, but the basic observation is that many animals that signal with substrate vibrations have
very fine control of signal frequency and are able to generate high structure complexity.

The Taxonomic Distribution of Substrate-Borne Signals

Substrate-borne signals are widespread in animals. They are probably ancestral to many groups within insects and spiders, if not to
each of those classes (�Cokl and Virant-Doberlet, 2003; Virant-Doberlet and �Cokl, 2004; Cocroft and Rodríguez, 2005; Drosopoulos
and Claridge, 2006; Hill, 2008). Other invertebrate groups have been less well sampled, but there are documented cases of
substrate-borne vibrational signals in fiddler crabs (Hill, 2008) and scorpions (Briceño and Bonilla, 2009), and there are potential
cases in annelids and chaetognaths (Hill, 2008). In vertebrates, too, there are varied examples: mole rats, kangaroo rats, elephants,

Fig. 3 Comparison of the airborne signal of a frog and the substrate-borne signal of an insect. (a) Airborne signal of a male Rana catesbeiana bull-
frog (Anura: Ranidae) (recording courtesy of Mark Bee). (b) Substrate-borne vibrational signals of a male Chrysoperla zastrowi subsp. sillemi lacewing
(Neuroptera: Chrysopidae) (recording courtesy of Charles Henry). We show signal waveforms (bottom traces) and spectrograms (top traces). Note
the lower frequency of the lacewing signal in spite of their being orders of magnitude less massive than the bullfrogs.
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moles, and frogs (Hill, 2008; Caldwell et al., 2010a,b; Randall, 2014), as well as suggestive evidence for various other large
mammals (O’Connell-Rodwell et al., 2000, 2001), chameleons (Barnett et al., 1999), and sculpins (Whang and Janssen, 1994).

There is also a great variety of mechanisms of production of substrate-borne signals. Some animals drum, stamp, scrape or head-
bang, while others stridulate, click tymbals, tremulate, or resonate their abdomen with muscle contractions (Uetz and Stratton,
1982; �Cokl and Virant-Doberlet, 2003; Hill, 2008; Henry and Wells, 2015; Miles et al., 2017).

There exists also great variety of perception mechanisms, with virtually any body part being involved across animals. In verte-
brates, the most likely organs involved in the perception of vibrations are the ear (with substrate vibrations reaching the ear through
the bones), and tactile perception (Hill, 2008). For instance, naked mole rats have a bony bridge between the lower jaw and the
middle ear. When listening for neighbours’ head bangs, naked moles will de-articulate their jaw and press it against the walls of
their burrows (Rado et al., 1989). Another striking example is the fat padding on elephant feet which are thought to play a role
in the reception of vibrations. These pads may function as impedance matching structures, reducing the sudden change in density
between the soil and the elephant’s skin and bones that would results in an intense loss of amplitude (O’Connell-Rodwell et al.,
2001). In arthropods, a variety of hair sensilla throughout the body may be involved in the perception of vibrations (Barth,
2002; �Cokl and Virant-Doberlet, 2003; Hill, 2008). Additionally, insects and spiders have specifically dedicated perception organs
such as the subgenual organs on insect legs (Gogala et al., 1974) or themetatarsal lyriform organ in spiders (Barth, 1982, 2002). This
variety is suggestive of multiple origins between clades (and perhaps within some clades too), but the observation that some
animals use several of these mechanisms simultaneously complicates the picture (Barth, 2002; �Cokl and Virant-Doberlet, 2003;
Hill, 2008).

The above diversity of examples indicates widespread sensibility to substrate vibrations and widespread use of such vibrations in
communication. There remain, however, many unexplored groups, and there is yet much to be discovered about the phylogenetic
distribution and density of species that use substrate-borne vibrational communication.

The Functions of Substrate-Borne Signals

Animals use substrate-borne vibrational signals for a wide diversity of communication purposes, and in a variety of within-species
and between-species interactions. Some species have multiple signals, each with its own function and context.

In within-species communication, substrate-borne vibrational signals are used in a broad range of contexts. These include activ-
ities as varied as cooperative foraging, recruitment of parental care, alarm signaling, coordinating group defense, sustaining group
cohesion, resource defense, and even caste determination in social insects (Cocroft and Rodríguez, 2005; Hill, 2008; Morales et al.,
2008; Ramaswamy and Cocroft, 2009; Caldwell et al., 2010b; Gilbert et al., 2011; Suryanarayanan et al., 2011; Pielström and Roces,
2012; Hager and Kirchner, 2013; Yadav et al., 2017). In the context of sexual interaction, they are used in aggressive signaling, pair
formation, pre- and post-copulatory courtship and mate choice (Cocroft and Rodríguez, 2005; Rodríguez et al., 2006; Hill, 2008;
Shamble et al., 2009; Noh and Henry, 2010; Sivalinghem et al., 2010; Wignall and Herberstein, 2013). These lists cannot do justice
to the richness of the variety entailed in these interactions. Consider, for instance, the case of the rhinoceros beetle in which pupae
produce vibratory signals that induce freezing startle responses in approaching larvae (aimed mainly at conspecifics and but
effective with larvae of other species too) to avoid being damaged by their passing too closely by in the soil (Kojima et al.,
2012a,b). Or the cases where a back-and-forth between the alarm signals of juveniles and the calming signals of their mom guides
maternal defense behavior while modulating the risk of false positives and retaining brood cohesion (Cocroft, 1996, 1999; Hamel
and Cocroft, 2012); or when maternal signals help synchronize egg hatching (Mukai et al., 2012). Each of the above mentioned
functions and contexts includes dozens of examples of similar appeal and interest.

Some of these signal functions involve spectacularly complex individual interactions. Both in cooperative synchronized
signaling and in competitive duetting and chorusing, for instance, there is sophisticated modification of signal placement relative
to the signals of other individuals (Cocroft, 1996, 2005; Kotiaho et al., 2004; Legendre et al., 2012; Rodríguez et al., 2018) (Fig. 4).
We also commonly observe back-and-forth male-female signal exchanges whereby females selectively indicate their presence to
mate-searching males, expressing their mate preferences for signal traits in ways that give feedback to males regarding the likely
success of their courtship efforts (e.g., Figs. 4 and 5(d)) (Henry and Wells, 2006; Rodríguez and Cocroft, 2006; Rodríguez et al.,
2006, 2012; Sullivan-Beckers and Hebets, 2011, 2014; de Groot et al., 2012; Polajnar et al., 2014; Rodríguez and Barbosa, 2014;
Rodríguez, 2015; Kuhelj et al., 2016). Substrate-borne signals are part of what may be the most complex communication systems
known in animals, at least in terms of the sheer number and arrangement of the elements in the signals (Girard et al., 2011; Elias
et al., 2012).

Substrate-borne signaling used in between-species communication is no less sophisticated. Most commonly, perhaps, animals
produce defensive startle signals, but more specialized functions include signaling to recruit care frommutualists, or mimicking the
signals of social species to parasitize their care behavior (Cocroft and Rodríguez, 2005; Hill, 2008; Barbero et al., 2009; Di Giulio
et al., 2015).

Some species use substrate-borne signals throughout their lives in a variety of interactions and for different functions. In some
species, for example, juveniles use specialized signals as they coordinate cooperative foraging efforts and adults use different sets of
signals as they search for mates. This may add up to quite considerable signal repertoires, remarkable especially when considering
the small brain sizes of many of the species involved (e.g., Fig. 5).
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Evolutionary Origins

It is extraordinarily difficult for an animal to move without generating substrate vibrations, which are therefore ubiquitous cues
about the presence and behavior of animals in the vicinity of other animals. It is not surprising, then, to see that a great variety
of species attend to substrate vibrations to obtain information about multifarious features of their surroundings, including the pres-
ence of prey or natural enemies (Hill, 2008; Cocroft, 2011). Termites, for instance, eavesdrop on substrate vibrations to detect and
avoid conspecific competitors (Evans et al., 2009), while frogs attend to substrate vibrations to detect and escape predators, and can
distinguish the patterns made by their approach from those made by the rain (Warkentin, 2005; Warkentin et al., 2007; Caldwell
et al., 2010a). General sensitivity to substrate vibrations is much more widespread than their use for communication: It seems to be
basal for vertebrates, and probably is so for many if not all groups of invertebrates as well (Barth, 2002; �Cokl and Virant-Doberlet

Fig. 4 Example of competitive signal placement in a vibrational insect, a member of the Enchenopa binotata complex of treehoppers (Hemiptera:
Membracidae) (recording courtesy of Laura Sullivan-Beckers). We show signal waveforms (bottom traces) and spectrograms (top traces). The
recording shows an interaction between two males and one female. At the beginning, a male and a female are engaged in a duetting interaction – he
produces his advertisement signal and she produces her response signal to encourage him to approach her. However, on his second and third
signals, the male is overlapped by a jamming signal produced by another male, and at the end of the recording the response signal by the female is
jammed by the other male.

Fig. 5 Partial signal repertoire of one species in the Enchenopa binotata complex (Hemiptera: Membracidae). (a-c) Different signal types used by
nymphs. (d) Adult male-female duetting signals. We show signal waveforms (bottom traces) and spectrograms (top traces).
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2003; Cocroft and Rodríguez, 2005; Hill, 2008). Even some plants are sensitive to the vibrations induced by the insects that feed on
them – specifically monitoring the vibrations and not merely the damage of feeding – andmodulate their chemical defenses accord-
ingly (Appel and Cocroft, 2014).

Sophisticated behavioral adaptations and counter-adaptations have evolved around the sensitivity to substrate vibrations. Earth-
worms, for example, were discovered by Darwin to be sensitive to vibrations propagated through the soil, and he proposed that they
use them to detect the approach of burrowing predators such as moles and escape them by rising to the surface (Darwin, 1881;
Costa, 2017). In turn, other predators, such as gulls and turtles, have evolved to exploit this response by stomping the ground
to induce the worms to surface in order to catch them, to say nothing of the humans that also exploit this defense to gather
them for fishbait (Catania, 2008; Mitra et al., 2009).

Similarly remarkable is the case of “seismic echolocation” by blind mole-rats, which strike their head against the substrate inside
their tunnels and navigate by the reflections they receive (Kimchi et al., 2005). And termites can attend to the resonant features of the
wood on which they are feeding to select blocks of preferred sizes (Evans et al., 2005). Consider also “vibrational sounding” by some
parasitoid wasps (Broad and Quicke, 2000; Laurenne et al., 2009). The insect larvae that these wasps seek out as hosts for their brood
often conceal themselves inside plant tissues or in the soil. Some parasitoid wasps detect the incidental vibrations produced by their
hosts to locate them (Djemai et al., 2004). Further, several species within two families of parasitoid wasp have repeatedly evolved
a form of echolocation whereby they tap the substrate with their antennae, which are modified especially for the purpose, and sense
the returning echoes through the subgenual organ in their legs – the mechanism of perception of vibrational signals in many other
insects (�Cokl and Virant-Doberlet 2003; Cocroft and Rodríguez, 2005) – to locate the site to insert their ovipositor.

The widespread sensitivity to substrate vibrations among animals of all sorts sets the stage for the evolution of signaling in this
channel through the cue-to-signal pathway (Greenfield, 2002). In other words, given the ubiquity of substrate-vibration cues about
the presence and behavior of other individuals in the environment, animals have very often been selected to attend to those vibra-
tions to gain information about their surroundings. In turn, some of the animals that produce such cues have been selected to
modify their behavior according to the effect they have on those attending to their cues, thereby exerting selection on receivers
to modify their responses and eventually yielding specialized signals and receiver responses in communication systems. A beauti-
fully worked example of these transitions is the evolution of ritualized vibrational signaling by anal scraping from modified loco-
motory behavior in masked birch caterpillars (Scott et al., 2010).

As a consequence of the above evolutionary pathway, there are many species that both communicate with substrate-borne
signals and attend more broadly to disturbances in the substrate for threat detection and prey localization – spiders, scorpions,
and stink bugs offer examples of this, but it is probably much more widespread than currently appreciated (Hill, 2008; Cocroft,
2011). The evolutionary twists and turns may continue even further when predators sensitive to substrate vibrations are selected
to eavesdrop on the signals of their species prey to locate them (Cocroft and Rodríguez, 2005; Cocroft, 2011; Laumann et al.,
2007, 2011; Virant-Doberlet et al., 2011), or to aggressively mimic the prey species’ prey to lure and approach them (Jackson
and Brassington, 1987; Wignall and Taylor, 2011), or even to aggressively mimic the prey species’ courtship signals (Jackson
and Wilcox, 1990).

Conclusion

Reports of communication with substrate-borne signals date back at least two centuries (Smeathman, 1781), but only in the last two
decades did the pace of research pick up as researchers have become increasingly aware of this channel of sensation and commu-
nication. Along this history, careful observation of the natural behavior of animals and technical innovation have been twin keys for
progress in our knowledge. With the increasing availability of methods and techniques for monitoring and experimenting with
substrate borne signals (Cocroft et al., 2014; Elias and Mason, 2014) huge opportunities for discovery are opening for students
of animal behavior.
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