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Abstract
1.	 Biodiversity	in	freshwater	habitats	is	decreasing	faster	than	in	any	other	type	of	
environment,	mostly	as	a	result	of	human	activities.	Monitoring	these	losses	can	
help	guide	mitigation	efforts.	In	most	studies,	sampling	strategies	predominantly	
rely	on	collecting	animal	and	vegetal	specimens.	Although	these	techniques	pro‐
duce	valuable	data,	they	are	 invasive,	time‐consuming	and	typically	permit	only	
limited	 spatial	 and	 temporal	 replication.	 There	 is	 need	 for	 the	 development	 of	
complementary	methods.

2.	 As	observed	in	other	ecosystems,	freshwater	environments	host	animals	that	emit	
sounds,	either	to	communicate	or	as	a	by‐product	of	their	activity.	The	main	fresh‐
water	 soniferous	 groups	 are	 amphibians,	 fish,	 and	 macroinvertebrates	 (mainly	
Coleoptera	and	Hemiptera,	but	also	some	Decapoda,	Odonata,	and	Trichoptera).	
Biophysical	processes	such	as	flow	or	sediment	transport	also	produce	sounds,	as	
well	as	human	activities	within	aquatic	ecosystems.

3.	 Such	animals	 and	processes	 can	be	 recorded,	 remotely	 and	autonomously,	 and	
provide	 information	 on	 local	 diversity	 and	 ecosystem	 health.	 Passive	 acoustic	
monitoring	(PAM)	is	an	emerging	method	already	deployed	in	terrestrial	environ‐
ments	that	uses	sounds	to	survey	environments.	Key	advantages	of	PAM	are	its	
non‐invasive	nature,	as	well	as	 its	ability	to	record	autonomously	and	over	 long	
timescales.	All	 these	 research	 topics	 are	 the	main	 aims	of	 ecoacoustics,	 a	 new	
scientific	discipline	investigating	the	ecological	role	of	sounds.

4.	 In	 this	 paper,	we	 review	 the	 sources	 of	 sounds	 present	 in	 freshwater	 environ‐
ments.	We	then	underline	areas	of	research	in	which	PAM	may	be	helpful	empha‐
sising	the	role	of	PAM	for	the	development	of	ecoacoustics.	Finally,	we	present	
methods	used	to	record	and	analyse	sounds	in	those	environments.

5.	 Passive	acoustics	represents	a	potentially	revolutionary	development	in	freshwa‐
ter	ecology,	enabling	continuous	monitoring	of	dynamic	bio‐physical	processes	to	
inform	conservation	practitioners	and	managers.
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1  | INTRODUC TION

Freshwater	environments	host	a	 large	number	of	endemic	species,	
some	 of	 which	 are	 highly	 threatened	 (Céréghino,	 Biggs,	 Oertli,	 &	
Declerck,	 2008;	 Keith,	 Persat,	 Feunteun,	 &	 Allardi,	 2011).	 Those	
environments	 are	 undergoing	 tremendous	 threats	 stemming	 from	
anthropological	 activities	 such	 as	 drainage,	 pollution	 (agricul‐
tural	 fertilisation	 or	 industrial	 waste),	 cattle,	 or	 dam	 construction	
(Dudgeon	et	al.,	2006;	Wood,	Greenwood,	&	Agnew,	2003).	These	
activities	result	in	direct	loss,	fragmentation	(Wood	et	al.,	2003)	and	
quality	alteration	of	habitats	(e.g.	pollution	or	desiccation),	such	that	
species	have	declined	at	a	much	higher	rate	in	freshwater	systems	
(83%)	than	in	all	ecosystems	(60%)	between	1970	and	2014	(WWF,	
2018).

To	evaluate	and	predict	the	impact	of	these	threats	on	freshwa‐
ter	 environments,	 their	 effects	 need	 to	 be	monitored.	Monitoring	
an	environment	consists	of	measuring	adequate	variables	to	extract	
relevant	 knowledge	 on	 ecological	 condition.	 In	 freshwater	 envi‐
ronments,	 these	variables	can	be	structural	variables	such	as	 flow	
discharge,	 sediment	 type,	 or	 biological	 communities	 or	 functional	
variables	 such	 as	 ecosystem	 processes	 and	 species	 interactions	
(Sandin	&	Solimini,	2009).

The	use	of	passive	acoustic	monitoring	(PAM)	as	a	non‐invasive	
ecoacoustic	method	to	sample	and	monitor	ecosystems	is	gaining	
traction	 globally	 (Blumstein	 et	 al.,	 2011;	 Furnas	&	Callas,	 2015;	
Felisberto	 et	 al.,	 2015;	 Heinicke	 et	 al.,	 2015;	 Gibb,	 Browning,	
Glover‐Kapfer,	 &	 Jones,	 2018;	 2010).	 This	 method	 consists	 of	
recording	and	analysing	the	sounds	emanating	from	an	environ‐
ment,	in	either	air	or	water,	to	extract	information	about	presence	
of	particular	species	(e.g.	Kottege,	Jurdak,	Kroon,	&	Jones,	2015;	
Ulloa	 et	 al.,	 2016)	 or	 about	 ecosystem	 conditions	 and	 dynam‐
ics	 (Fuller,	Axel,	Tucker,	&	Gage,	2015;	Pieretti,	Farina,	&	Morri,	
2011;	 Sueur,	 Pavoine,	 Hamerlynck,	 &	 Duvail,	 2008).	 Passive	
acoustic	monitoring	can	be	very	accurate	and	cost‐effective	 for	
various	 applications	 in	 ecology	 such	 as	 detecting	 rare,	 invasive,	
or	 threatened	 species	 (Campos‐Cerqueira	 &	 Aide,	 2016;	 Gasc,	
Anso,	 Sueur,	 Jourdan,	 &	 Desutter‐Grandcolas,	 2018),	 contrast‐
ing	differences	in	structure	and	condition	of	ecosystems	(Duarte	
et	al.,	2015;	Gasc,	Sueur,	Pavoine,	Pellens,	&	Grandcolas,	2013),	
and	 continuously	 monitoring	 environments	 (Aide	 et	 al.,	 2013).	
Passive	 acoustic	 monitoring	 has	 particularly	 strong	 potential	 in	
low	visibility	environments	such	as	dense	forests	or	underwater,	
because	sound	propagation	is	not	as	strongly	impacted	by	obsta‐
cles	as	other	sensing	methods	such	as	netting	or	visual	detection.	
Passive	 acoustic	 monitoring	 has	 so	 far	 been	 used	 in	 terrestrial	
habitats	such	as	tropical	and		temperate	forests	(Depraetere	et	al.,	
2012;	 Malavasi	 &	 Farina,	 2013;	 Rodriguez	 et	 al.,	 2014),	 urban	
areas	(Pieretti	&	Farina,	2013),	and	plains	(Mullet,	Gage,	Morton,	
&	Huettmann,	2015);	and	in	marine	habitats	such	as	open	ocean	
(Parks,	 Miksis‐Olds,	 &	 Denes,	 2014;	 Ruppé	 et	 al.,	 2015),	 coral	
reefs	 (Bertucci,	 Parmentier,	 Berten,	 Brooker,	 &	 Lecchini,	 2015),	
and	coastal	waters	(Felisberto	et	al.,	2015;	McWilliam	&	Hawkins,	
2013).	Although	 there	 is	 a	wealth	 of	 studies	 on	 bioacoustics	 of	

freshwater	 animals,	mainly	 looking	 at	 behaviour	 (e.g.	 Colleye	 &	
Parmentier,	 2012;	 Jansson,	 1979),	 or	 sound	 production	mecha‐
nisms	(e.g.	Fine	&	Parmentier,	2015;	Jansson,	1972),	so	far,	PAM	
has	 rarely	 been	 used	 in	 freshwater	 environments	 (Anderson,	
Rountree,	 &	 Juanes,	 2008;	 Desjonquères	 et	 al.,	 2015;	 Straight,	
Freeman,	&	Freeman,	2014).

Although	 it	has	 rarely	been	applied	 to	date,	PAM	of	 freshwa‐
ter	environments	has	the	potential	 to	circumvent	 issues	with	tra‐
ditional	 sampling	 techniques.	 Passive	 acoustic	monitoring	mainly	
requires	 the	 installation	 of	 a	 hydrophone	 and	 an	 audio	 recorder	
to	record	sounds	produced	underwater	and	at	air/water	interface	
(such	as	a	calling	frog).	Passive	acoustic	monitoring	is	a	non‐inva‐
sive	technique	that	neither	modifies	the	environment,	nor	disturbs	
animal	 behaviour.	With	 the	 advent	 of	 autonomous	 and	 weather	
resistant	 recorders,	 long‐term	PAM	 can	 be	 undertaken	with	 rea‐
sonable	 efforts	 and	 costs	 (Blumstein	 et	 al.,	 2011;	 Linke,	Gifford,	
et	al.,	2018).

Passive	acoustic	monitoring	offers	advantages	in	freshwater	en‐
vironments	for	three	main	reasons.	The	methods	currently	used	to	
monitor	populations	are	primarily	netting	and	electro‐fishing—two	
invasive	methods	that:	(1)	can	impact	the	health	of	captured	individ‐
uals	or	at	least	provoke	fright	responses	(Clément	&	Cunjak,	2010;	
Ensign,	Temple,	&	Neves,	2002);	 (2)	do	not	allow	continuous	mon‐
itoring	 (Arrington	 &	Winemiller,	 2003);	 (3)	 require	 extensive	 time	
and	labour	for	deployment	and	maintenance.	Passive	acoustic	mon‐
itoring	is	not	affected	by	these	issues,	and	is	therefore	an	attractive	
complement	to	existing	methods.

To	 foster	 the	 development	 of	 PAM	 techniques	 for	 freshwater	
environments	we:	(1)	review	the	current	knowledge	on	underwater	
sounds	 in	 freshwater	 environments;	 (2)	 demonstrate	 the	potential	
for	PAM	to	be	applied	 to	various	 fields	of	 freshwater	biology	and	
ecology;	 and	 (3)	 illustrate	 current	methods	 for	PAM	 in	 freshwater	
environments.	This	article	does	not	aim	 to	comprehensively	cover	
the	extensive	literature	on	a	well‐established	discipline,	but	rather	to	
inform	the	freshwater	biology	community	of	the	possibilities	offered	
by	PAM	of	freshwater	environments.

2  | WHAT C AN BE ACOUSTIC ALLY 
MONITORED IN FRESHWATER 
ENVIRONMENTS?

2.1 | Biological composition and interactions

Freshwater	environments	harbour	a	stunning	diversity	of	sounds	
(Figure	1a,b)	 (Desjonquères	et	al.,	2015;	Gottesman	et	al.,	2018;	
Linke,	Gifford,	et	al.,	2018).	At	 least	 four	animal	groups	produce	
detectable	sounds	underwater	 in	aquatic	environments:	amphib‐
ians,	 fish,	 insects,	 and	 crustaceans	 (Aiken,	 1985;	 Favaro,	 Tirelli,	
Gamba,	 &	 Pessani,	 2011;	 Fine	 &	 Parmentier,	 2015;	 Gerhardt	
&	 Huber,	 2002).	 These	 animals	 emit	 sounds	 with	 a	 variety	 of	
mechanisms	 including	 constricted	 expulsion	 of	 air	 in	 amphib‐
ians	 (Gerhardt	 &	 Huber,	 2002)	 and	 insect	 larvae	 (Aiken,	 1985;	
Balduf,	1935),	contraction	of	swim	bladder	muscles	in	fish	(Fine	&	
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Parmentier,	2015),	and	stridulation	in	many	aquatic	insects	(Aiken,	
1985),	some	fishes	(mainly	catfish:	Mohajer,	Ghahramani,	&	Fine,	
2015),	 and	 potentially	 crustaceans	 (Favaro	 et	 al.,	 2011).	 Sounds	
emitted	by	aquatic	animals	differ	in	their	temporal	and	frequency	
structures	(Figure	1c–f).	Sound	frequencies	vary	from	about	50	Hz	

for	 some	 fishes	 (Lugli,	 Yan,	&	Fine,	 2003)	 up	 to	 100,000	Hz	 for	
a	 family	 of	 caddisflies	 (Silver	 &	 Halls,	 1980).	 These	 sounds	 are	
mainly	produced	during	mating	behaviour	(Aiken,	1985),	territorial	
disputes	(Jansson	&	Vuoristo,	1979)	or	distress	conditions	(Aiken,	
1985).	Some	of	 the	sounds	described	are	 likely	 to	be	 involved	 in	

F I G U R E  1  Spectrograms	and	oscillograms	of	sound	productions	and	environmental	recordings	in	freshwater	(Fourier	window	length:	
1,024	samples,	frame	overlap:	80%,	window	type:	Hanning).	(a)	Environmental	recording	in	a	secondary	channel	of	the	river	Rhône	(France).	
(b)	Environmental	recording	in	a	waterhole	in	Talaroo	(Australia).	(c)	Water	beetle	(Acilius sulcatus).	(d)	Spangled	grunter	(Leiopotherapon 
unicolor).	(e)	Red	swamp	crayfish	(Procambarus clarkii).	(f)	Painted	frog	(Discoglossus pictus)
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species	recognition	during	mating	and	are	therefore	expected	to	
be	 species‐specific	 (Jansson,	 1989;	 Pedroso,	 Barber,	 Svensson,	
Fonseca,	&	Amorim,	2013).	 Species‐specific	 sounds	 can	be	used	
to	survey	various	aspects	of	population	dynamics,	for	example	in	
the	 context	 of	 an	 endangered	 species	 (Dutilleux	&	 Curé,	 2018).	
However,	 numerous	 species‐specific	 sounds	 remain	 unrecorded	
and	 undescribed,	 particularly	 those	 of	 aquatic	 insects,	 fish,	 and	
crustaceans	(Desjonquères,	2016).

Freshwater	 ecosystem	monitoring	 usually	 involves	 the	 charac‐
terisation	of	macro‐invertebrate	and	fish	communities	(Bailey,	Linke,	
&	 Yates,	 2014).	 The	 use	 of	 PAM	 for	 community‐level	 monitoring	
could	complement,	or	when	appropriate,	replace	classical	methods	
such	as	specimen	collection	or	visual	identification.

2.2 | Physico‐chemical processes

2.2.1 | Water chemistry: gas exchanges

A	key	part	of	water	chemistry	is	the	concentration	and	composition	
of	 gases	dissolved	 in	 it.	Gas	 content	 can	be	 influenced	by	 several	
factors,	 including	 primary	 productivity,	 water	 turbulence	 and	 na‐
ture	of	 the	sediments	 (Brönmark	&	Hansson,	2017).	At	 the	water/
air	 interface,	sound	pressure	has	been	demonstrated	to	accurately	
represent	re‐aeration	(Morse	et	al.,	2007).	Re‐aeration	measures	the	
amount	of	gas	(usually	oxygen)	integrated	by	a	flowing	water	body	
due	to	water	turbulence;	re‐aeration	is	an	important	parameter	used	
to	calculate	whole‐stream	metabolism.

Underwater	 sounds	 can	 yield	 information	 about	 gas	 exchanges	
linked	 to	 primary	 production	 and	 organic	 matter	 decomposition.	
In	 marine	 environments,	 O2	 production	 of	 seagrass	 meadows	 can	
be	 estimated	 using	 the	 variation	 in	 propagation	 of	 emitted	 signals	
(Felisberto	et	al.,	2015).	Given	the	high	price	of	efficient	O2	sensors,	
using	acoustic	alternatives	could	significantly	reduce	the	cost	of	mea‐
surement	and	provide	a	more	comprehensive	picture	of	environment	
(including	other	relevant	sounds).	In	freshwater	environments,	it	was	
recently	reported	that	the	emission	of	gases	during	plant		respiration	or	
photosynthesis	and	organic	matter	decomposition	produce	whistling	
and	ticking	sounds	(Linke,	Gifford,	et	al.,	2018).	Moreover,	anaerobic	
organic	matter	decomposition	mainly	produces	methane,	which,	when	
expelled,	 also	 produces	 ticking	 sounds	 (Linke,	 Gifford,	 et	 al.,	 2018;	
C.D.	personal	observations).	Using	these	sounds	could	facilitate	mon‐
itoring	primordial	ecosystem	processes	such	as	plant	respiration,	or‐
ganic	matter	decomposition,	and	primary	production.

Water	chemistry	is	likely	to	be	related	to	sound	emission.	Indeed,	
if	the	water	is	unsaturated	in	oxygen,	oxygen	emitted	during	photo‐
synthesis	will	diffuse	in	the	water.	In	saturated	waters,	oxygen	will	
not	be	able	to	diffuse	and	bubbles	should	form,	potentially	emitting	
specific	whistling	and	ticking	sounds.	By	contrast,	eutrophied	envi‐
ronments	with	sediments	rich	in	organic	matter	will	also	have	highly	
active	ticking	and	whistling	sounds	due	to	anoxic	organic	decompo‐
sition	producing	methane	bubbles.	We	suggest	that	testing	for	the	
specificity	of	these	sounds	provides	an	interesting	avenue	for	a	new	
application	to	probe	water	chemistry	with	acoustics.

2.2.2 | Physical habitat and hydrological processes

Sounds	emitted	by	hydrological	processes	such	as	sediment	transport	
and	flow	turbulence	have	specific	acoustic	signatures.	These	unique	
underwater	soundscapes	can	be	detected	with	hydrophone	measure‐
ments	 both	 with	 laboratory	 experiments	 and	 large‐scale	 measure‐
ments	 in	 the	 field	 (Tonolla,	 Lorang,	Heutschi,	Gotschalk,	&	Tockner,	
2011;	Tonolla,	Lorang,	Heutschi,	&	Tockner,	2009).	They	provide	meas‐
ures	of	habitat	characteristics	across	spatially	continuous	and	hetero‐
geneous	 environments	 of	 riverine	 floodplains.	 Sounds	 generated	by	
physical	structures	reflect	 important	hydraulic	 (i.e.	turbulence	levels)	
and	 geomorphic	 (i.e.	 bedload	 mobility)	 dynamic	 processes.	 Using	
such	 sounds,	 Tonolla,	 Acuña,	 Lorang,	 Heutschi,	 and	 Tockner	 (2010)	
were	able	 to	classify	 riverine	habitats	characterised	by	different	hy‐
dromorphological	 features	 according	 to	 the	 amplitude	 contained	 in	
nine	frequency	bands.	Underwater	acoustic	monitoring	was	also	used	
for	rapid	assessment	of	bedload	transport	(Geay	et	al.,	2017)	and	hy‐
dropeaking	events	 (Lumsdon	et	al.,	2018).	Acoustics	enables	 instan‐
taneous	and	continuous	monitoring	of	sediment	transport	dynamics.	
Passive	 acoustic	 monitoring	 in	 freshwater	 habitats	 could	 therefore	
help	further	unravel	spatio‐temporal	hydrological	and	geomorphologi‐
cal	dynamics	and	thanks	to	such	sounds,	extract	real‐time	information	
about	extreme	weather	conditions	such	as	ice	forming	and	melting,	or	
dramatic	changes	in	water	flow	due	to	floods	or	droughts.

3  | STUDY ARE A S FOR PAM: FRESHWATER 
ECOACOUSTIC S

Ecoacoustics	 is	 a	 recently	 formalised	 scientific	 discipline	 defined	
as	 “a	 theoretical	 and	 applied	discipline	 that	 studies	 sound	 along	 a	
broad	range	of	spatial	and	temporal	scales	in	order	to	tackle	biodi‐
versity	and	other	ecological	questions”	(Farina	&	Gage,	2017;	Sueur	
&	Farina,	2015).	Here,	we	present	four	promising	areas	of	applica‐
tion	for	acoustic	monitoring	in	freshwater	systems:	(1)	spatial	ecol‐
ogy;	(2)	community	ecology;	(3)	environmental	change;	and	(4)	noise	
pollution.

3.1 | Spatial ecology: species distribution, 
abundance, and biodiversity

Applying	PAM	techniques	to	species	detection	allows	for	automatic	
recording,	 detection,	 and	 localisation	 of	 single	 species	 (Risch	 et	 al.,	
2014).	 Using	 a	 network	 of	 acoustic	 sensors	may	 further	 reveal	 the	
spatial	distribution	of	species	within	the	environment,	either	roughly	
with	regularly	spaced	hydrophones	(Desjonquères,	Rybak,	Ulloa,	et	al.,	
2018)	or	precisely	using	an	array	of	hydrophones	and	comparing	dif‐
ferences	 in	 intensity	and	time	of	arrival	 (Hulgard,	Moss,	Jakobsen,	&	
Surlykke,	 2016;	Malinka,	Gillespie,	Macaulay,	 Joy,	&	 Sparling,	 2018;	
Morrissey,	Ward,	DiMarzio,	Jarvis,	&	Moretti,	2006).

Using	 acoustic	 indices	 allows	 for	 overall	 diversity	 assessment	
at	 different	 sites	 and	 for	 contrasting	 diversity	 at	 different	 loca‐
tions	(Gasc,	Sueur,	Pavoine,	et	al.,	2013;	Parks	et	al.,	2014).	This	 is	
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particularly	 interesting	 in	 freshwater	environments	where	most	of	
the	 time	other	 non‐invasive	methods	 such	 as	 visual	 detection	 are	
hindered	by	 cloudy	water	 and	vegetation.	Acoustic	detection	also	
seems	especially	apt	for	rare	species	because	it	can	be	deployed	con‐
tinuously	for	long	periods	with	little	effort,	maximising	the	chance	of	
positive	detection	of	infrequent	events.

Quantifying	spatial	heterogeneity	in	freshwater	environments	may	
facilitate	detection	of	favourable	habitats	for	certain	species.	Sounds	
emitted	by	flow	turbulence	and	sediment	transport	could	be	likely	to	
act	as	important	cues	for	several	aquatic	organisms	(including	fish	and	
adult	 stage	 aquatic	 insects)	 for	 habitat	 selection:	 Radford,	 Stanley,	
Simpson,	 and	 Jeffs	 (2011)	 revealed	 that	marine	 fish	 larvae	 use	 the	
sounds	of	coral	reefs	to	locate	adequate	habitats.	Additionally,	some	
aquatic	organisms	have	been	shown	to	use	acoustic	cues	in	their	en‐
vironment	 for	 spatial	 orientation	 and	 positioning	within	 and	 among	
suitable	habitats	(Slabbekoorn	&	Bouton,	2008).

3.2 | Community ecology: species interactions

Single	 sounds	 are	 ephemeral	 phenomena	 produced	 at	 a	 specific	
point	in	space	and	time,	and	with	characteristic	frequency	content.	
Each	sound	emitted	by	a	specific	organism,	occupies	a	specific	po‐
sition	 (or	positions)	within	 the	acoustic	 space—termed	an	acoustic	
niche	(Krause,	1993).	As	acoustic	space	is	shared	between	different	
individuals,	species,	and	environmental	sounds,	sounds	may	overlap	
potentially	resulting	in	masking.	Inter‐	and	intra‐specific	competition	
for	the	acoustic	space	might	therefore	occur	(Krause,	1987).	Similar	
to	the	concept	of	the	Hutchinsonian	niche	(Hutchinson,	1957),	this	
competition	is	thought	to	result	in	the	partitioning	of	the	resource—
here	 acoustic	 space	 (Krause,	 1987).	 This	 hypothesis	 is	 called	 the	
acoustic	 niche	 hypothesis	 (ANH,	 Krause,	 1993).	 According	 to	 this	
hypothesis,	 acoustic	 populations	 in	 the	 same	 acoustic	 community	
(same	environment)	are	expected	to	diverge	acoustically	to	avoid	the	
cost	of	masking.	A	competing	hypothesis	states	that	animals	sharing	
the	 same	acoustic	 space—and	 thus	 the	 same	habitat—should	have	
converging	calls	due	to	the	similarity	of	the	propagation	constraints.	
This	hypothesis	 is	called	the	acoustic	adaptation	hypothesis	(AAH,	
Morton,	1975).

Both	 the	 AAH	 and	ANH	 are	 currently	 debated	 and	 have	 re‐
ceived	contrasting	support	at	the	community	level	(e.g.	support	for	
AAH:	Tobias,	Planque,	Cram,	&	Seddon,	2014;	support	 for	ANH:	
Stanley,	 Walter,	 Venkatraman,	 &	 Wilkinson,	 2016;	 Villanueva‐
Rivera,	 2014).	 Desjonquères,	 Rybak,	 Castella,	 Llusia,	 and	 Sueur	
(2018)	found	that	in	acoustic	communities	of	secondary	channels	
of	 the	 Rhône	 river,	most	 sound	 types	 had	 frequency	 character‐
istics	 corresponding	 to	 the	 best	 propagating	 sounds,	 potentially	
corroborating	 the	AAH	 in	 freshwater	 environments.	Community	
structure	and	species	 interactions	such	as	food	webs	are	central	
subjects	 in	 freshwater	 ecology	 (Atkinson,	 Capps,	 Rugenski,	 &	
Vanni,	2017).	Passive	acoustic	monitoring	may	make	it	possible	to	
survey	those	relationships	for	example	by	detecting	alarm	calls	of	
prey	 species	 or	 change	 in	 acoustic	 activity	 of	 a	 prey	 at	 the	 ap‐
proach	of	a	predator	(ter	Hofstede,	2018).	Moreover,	PAM	allows	

collection	of	long‐term	recordings,	providing	the	statistical	power	
required	 to	 reveal	 acoustic	 competitive	 interactions	 potentially	
linking	to	the	ANH	(Krause,	1993).

3.3 | Assessment of response to 
environmental change

Environmental	change	such	as	global	warming	or	pollution	can	have	
profound	 consequences	 for	 freshwater	 environments	 (Strayer	 &	
Dudgeon,	2010).	Biodiversity	in	freshwater	environments	is	declin‐
ing	faster	than	 in	many	other	threatened	environments	 (Dudgeon	
et	 al.,	 2006;	Mantyka‐Pringle,	Martin,	Moffatt,	 Linke,	 &	 Rhodes,	
2014).	Such	changes	are	particularly	noticeable	in	the	soundscape	
(Pavan,	2017)	and	thus	acoustic	monitoring	is	particularly	suited	to	
surveying	environments	regularly	with	automated	recorders.	Such	
regular	 surveys	 can	 produce	 time	 series	 revealing	 the	 short‐term	
effects	of	global	changes	(Krause	&	Farina,	2016).	Global	warming	
is	particularly	alarming	for	ectotherm	species	and	threatened	spe‐
cies.	 Not	 only	 does	 presence/absence	 reveal	 potential	 response	
to	changes	in	spatial	range,	activity	rates	can	also	be	indicative	of	
suboptimal	conditions.	Indeed,	many	call	parameters	of	ectotherms	
are	affected	by	temperature	(Sanborn,	2005).	For	instance,	(Llusia,	
Márquez,	Beltrán,	Moreira,	&	do	Amaral,	2013)	showed	that	cho‐
rus	attendance	in	frog	species	is	partly	determined	by	temperature.	
Moreover,	 in	 the	 goby	Padogobius martensi,	 pulse	 rate	 is	 strongly	
influenced	by	water	temperature	and	the	emission	of	sounds	is	lim‐
ited	to	a	specific	range	of	temperatures	(Torricelli,	Lugli,	&	Pavan,	
1990).	 Another	 advantage	 of	 PAM	 is	 its	 continuity.	 For	 example,	
population	or	phenology	shifts	in	response	to	global	change	could	
be	 assessed	 more	 efficiently	 using	 long‐term	 continuous	 PAM,	
rather	than	yearly	snapshots.

3.4 | Responses to noise pollution

Human	activities	generate	noises	that	can	have	tremendous	impact	
on	living	organisms	(Halfwerk	&	Slabbekoorn,	2015).	This	aspect	of	
soundscape	conservation	has	been	gaining	traction	in	recent	years	
(Pavan,	2017).	Aquatic	environments	are	particularly	vulnerable	due	
to	 the	 relatively	 low	 attenuation	 of	 sounds	 in	water	 (Parks	 et	 al.,	
2014;	Tyack	&	Janik,	2013).	Freshwater	environments	are	subjected	
to	noise	coming	from	sediment	extraction,	motorised	boats,	recrea‐
tional	 activities,	 and	 construction	 (Bolgan	et	 al.,	 2016).	Noise	pol‐
lution	can	 result	 in	 injuries	 such	as	hearing	 loss,	 internal	bleeding,	
or	even	death	(Popper	&	Hastings,	2009;	Popper	&	Hawkins,	2019;	
Popper	et	al.,	2005),	mask	communication	signals	 (Fletcher,	2007),	
or	affect	population	sizes	and	density	(Laiolo,	2010).	Monitoring	de‐
mographic	and	behavioural	responses	of	species	to	invasive	noises	
would	help	inform	mitigation	measures.

The	recently	published	meta‐analysis	by	Cox,	Brennan,	Gerwing,	
Dudas,	 and	 Juanes	 (2018)	 revealed	 adverse	 effects	 of	 noise	 on	
fish,	 ranging	 from	 behavioural	 changes	 in	 foraging	 efficiency,	 re‐
productive	success	or	predation	risks	to	physiological	effects	such	
as	 increased	hearing	 thresholds	or	high	 levels	of	 stress	hormones.	
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However,	 it	seems	that	 fish	 from	noisy	environments	are	 less	sus‐
ceptible	to	noise	(Harding	et	al.,	2018).	Desjonquères,	Rybak,	Ulloa,	
et	al.	(2018)	found	evidence	using	PAM	that	artificial	noise	increases	
the	acoustic	activity	of	an	aquatic	insect	as	well	as	delaying	the	ac‐
tivity	cycle.	However,	such	studies	for	freshwater	environments	are	
still	rarely	undertaken.

Measurements	 of	 the	 extent	 of	 anthropogenic	 noise	 in	 fresh‐
water	environments	are	still	scarce	(Bolgan	et	al.,	2016).	Predictive	
models	of	noise	propagation	are	powerful	 tools	 for	estimating	the	
spread	of	noise	impacted	areas.	Such	models	have	been	developed	
in	 marine	 environments	 (Farcas,	 Thompson,	 &	 Merchant,	 2016);	
however,	they	show	limitations	in	shallow	environments	and	would	
therefore	require	some	adjustments	to	be	applied	to	freshwater	en‐
vironments.	Passive	acoustic	monitoring	allows	mapping	of	the	ex‐
tent	 and	 intensity	of	 noise	disturbances	underwater	 and	 could	be	
used	to	validate	or	update	such	propagation	models.

4  | HOW TO UNDERTAKE PAM IN 
FRESHWATER

Passive	acoustic	monitoring	requires	several	steps,	including	record‐
ing,	storing,	and	analysing	sounds	as	well	as	linking	sounds	to	envi‐
ronmental	variables	(Figure	2).	In	this	section,	we	discuss	practically	
how	PAM	can	be	applied	to	freshwater	environments.	We	describe:	
(1)	recording	methods	and	the	practical	considerations	for	sampling	
designs;	(2)	data	storage;	(3)	signal	analysis;	and	(4)	analyses	to	link	
ecology	and	acoustics.

4.1 | Recording and sampling design

4.1.1 | Recording units

To	 record	 underwater	 sound	 emanating	 from	 freshwater	 environ‐
ments,	 one	 simply	 needs	 a	 hydrophone	 connected	 to	 a	 recorder.	
The	sensitivity	of	the	hydrophone	should	be	tuned	to	the	species	or	

ecological	communities	of	interest.	Hydrophones	vary	in	overall	sen‐
sitivity	and	sensitivity	at	different	frequencies:	some	are	specifically	
dedicated	to	high	or	low	frequency	ranges	(Merchant	et	al.,	2015).	A	
diversity	of	recorders,	both	proprietary	and	open‐source,	are	emerg‐
ing,	allowing	for	continuous	automatic	recording	(Acevedo,	Corrada‐
Bravo,	 Corrada‐Bravo,	 Villanueva‐Rivera,	 &	 Aide,	 2009;	 Digby,	
Towsey,	 Bell,	 &	 Teal,	 2013;	Whytock	&	Christie,	 2017).	 These	 can	
range	from	high	quality,	sophisticated	commercial	units	by	manufac‐
turers	such	as	Wildlife	Acoustics	(Maynard,	U.S.A.)	or	Frontier	Labs	
(Brisbane,	Australia),	to	affordable	open	source	recorders	for	$50	(Hill	
et	al.,	2018).	Some	can	even	be	accessed	wirelessly	to	download	data	
(Sethi,	Ewers,	Jones,	Orme,	&	Picinali,	2017).	Some	of	these	recorders	
are	designed	to	resist	rough	natural	conditions	such	as	extremely	low	
or	high	temperatures,	strong	precipitation,	or	animal	nibbling.

Although	 these	 recorders	have	been	mainly	designed	 for	 terres‐
trial	and	marine	environments,	they	are	generally	transferable	to	fresh‐
water	environments.	 In	relatively	small	environments,	such	as	pools,	
ponds,	and	streams,	recorders	can	be	installed	on	the	bank	(Figure	3).	
For	bigger	environments	such	as	lakes,	installing	a	recorder	on	an	an‐
chored	floater	(Kuehne,	Padgham,	&	Olden,	2013)	or	fully	submerged	
is	 the	 most	 convenient	 options.	 High‐flow	 environments	 might	 be	
challenging	to	monitor,	as	high	amplitude	sounds	of	flow	turbulence	
and	 sediment	 transport—although	 extremely	 informative	 for	 hydro‐
logical	processes	assessment	(Tonolla	et	al.,	2010)—can	mask	valuable	
signals	for	acoustic	community	and	population	assessments.	One	solu‐
tion	designed	by	Tonolla	et	al.	 (2011)	was	for	the	hardware	to	move	
with	the	river	flow.	For	this	study,	hydrophones	attached	to	floaters	
recorded	 the	 flow	 turbulence	along	a	 river	 transect.	This	 setup	also	
allows	recording	of	transects	of	a	river	that	are	difficult	to	access.

4.1.2 | Temporal and spatial resolution

Acoustic	structure	and	function	in	freshwater	environments	are	spa‐
tially	and	temporally	heterogeneous.	Animals	communicate	at	spe‐
cific	times	and	in	particular	microhabitats	(Bradbury	&	Vehrencamp,	
1998;	Endler,	1992).	Perhaps	one	of	the	most	famous	examples	of	

F I G U R E  2  Passive	acoustic	monitoring	workflow.	From	left	to	right:	sounds	are	recorded	underwater	using	a	recorder	and	a	hydrophone.	
The	sound	then	needs	to	be	stored	in	permanent	storage	hardware.	The	recordings	can	then	be	analysed	with	acoustic	indices	or	automatic	
detection.	Finally	sounds	and	acoustic	attributes	are	linked
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temporal	heterogeneity—the	dawn	chorus—comprises	different	spe‐
cies	of	birds,	each	calling	during	a	specific	time	frame	(Dabelsteen	&	
Mathevon,	2002).	 Such	 sound	production	patterns	are	not	excep‐
tional:	many	species	have	very	specific	calling	schedules.	For	exam‐
ple,	several	aquatic	 insects	have	both	diurnal	and	annual	cycles	of	
activity	 (Desjonquères,	 Rybak,	 Ulloa,	 et	 al.,	 2018;	 Jansson,	 1974).	
These	 temporal	 patterns	 have	 also	 been	 detected	 at	 the	 acoustic	
community	 level	 in	 terrestrial	 (Lellouch,	 Pavoine,	 Jiguet,	Glotin,	&	
Sueur,	2014;	Rodriguez	et	 al.,	 2014)	 as	well	 as	 in	 aquatic	 environ‐
ments	(Linke,	Decker,	Gifford,	&	Desjonquères,	2018;	Ruppé	et	al.,	
2015).	Acoustic	diversity	not	only	varies	diurnally	but	also	seasonally	
(Amoser	&	Ladich,	2010;	Gage	&	Axel,	2014;	Jansson,	1974;	Risch	
et	al.,	2014).	It	is	therefore	crucial	to	choose	a	recording	schedule	ap‐
propriate	to	the	ecological	question	being	addressed.	In	this	special	
issue,	Linke,	Decker,	et	al.	(2018)	reveal	that	in	order	to	capture	most	
acoustic	diversity	in	a	freshwater	pool,	it	is	more	efficient	on	average	
to	sample	short	recordings	at	many	times	of	the	day	and	over	several	
days	than	longer	recordings	at	fewer	times	and	days.

Spatial	heterogeneity	and	sound	propagation	also	play	an	essen‐
tial	role	in	acoustic	monitoring	designs.	It	has	already	been	demon‐
strated	 in	 terrestrial	environments	 that	heterogeneous	 landscapes	
result	in	uneven	distribution	of	sounds	(Gómez,	Isaza,	&	Daza,	2018;	
Mullet,	 2017;	 Tucker,	Gage,	Williamson,	&	 Fuller,	 2014).	 The	main	
practical	challenge	to	consider	when	spatially	designing	a	sampling	
protocol	is	the	distance	at	which	sounds	can	be	detected	from	their	
source	or	active	space.	Active	space	varies	according	to	the	charac‐
teristics	of	 sounds,	 the	microphone	or	hydrophone	sensitivity	and	
the	 attributes	 of	 the	 environment	 being	monitored	 (Darras,	 Pütz,	
Fahrurrozi,	&	Tscharntke,	2016).	Sounds	have	different	active	space	
depending	on	how	acoustic	parameters	are	attenuated	along	their	
propagation.	Attenuation	can	be	a	result	of	spreading	loss	(because	
sound	travels	in	three	dimensions),	excess	energetic	dissipation	(due	

to	 part	 of	 the	 acoustic	 energy	 being	 lost	 as	 heat	 along	 its	 propa‐
gation)	 or	 reflection	 and	 refraction	 off	 obstacles.	 Reflection	 and	
refraction	of	sounds	as	well	as	differences	in	propagation	speed	of	
various	 frequencies	may	 result	 in	 distortion	of	 the	 sound.	 The	di‐
versity	of	species’	acoustic	traits	and	environmental	parameters	re‐
sults	in	a	diversity	of	active	spaces.	Active	spaces	should	therefore	
be	assessed	separately	in	acoustically	different	species	or	groups	of	
species	emitting	similar	sounds	(Alves,	Amorim,	&	Fonseca,	2016).

Assessments	in	shallow	freshwater	environments	such	as	ponds	
and	rivers	can	be	challenging	due	to	the	complexity	of	sound	prop‐
agation	in	shallow	waters.	In	such	environments,	some	frequencies	
might	be	attenuated	at	 relatively	 short	distances	 (few	decimetres;	
Aiken,	1982).	Shallow	water	environments	act	as	a	high	pass	 filter	
and	 there	 is	 a	 relationship	 between	 the	 depth	 of	 an	 environment	
and	the	cut	off	frequency	of	that	filter:	the	deeper	the	environment,	
the	 lower	 the	 cut‐off	 frequency	 (Forrest,	 Miller,	 &	 Zagar,	 1993).	
Freshwater	environments	can	also	contain	dense	vegetation	covers	
and	heterogenous	bottom	surfaces	containing	soft,	sandy	or	rocky	
sediments.	 All	 these	 elements	 can	 potentially	 affect	 the	 propaga‐
tion	 of	 sound.	 There	 is	 therefore	 a	 need	 to	 quantify	 their	 effects	
on	 sound	 propagation,	 to	 facilitate	 modelling	 in	 various	 environ‐
ments	and,	in	turn,	to	help	monitor	freshwater	environments	more	
efficiently.	Passive	acoustic	monitoring	should	therefore	be	planned	
according	to	 information	about	spatio‐temporal	heterogeneity	and	
efficiency	of	propagation	in	the	targeted	environment.

4.2 | Permanently storing and archiving data

As	for	any	data	collection,	once	the	data	are	collected,	it	is	extremely	
important	to	store	and	archive	them	properly	to	avoid	loss.	Meta‐data	
associated	 to	 the	 recordings	 should	 also	 be	 readily	 accessible	 and	
properly	stored.	For	PAM,	this	step	is	particularly	challenging	due	to	

F I G U R E  3  Pictures	of	typical	
recording	set‐ups.	(a)	Automatic	recorders	
and	hydrophones	set	up	in	a	pond	in	
Vidauban	(France).	(b)	Automatic	recorder	
set‐up	in	a	secondary	channel	of	the	river	
Rhône	(France)

(a) (b)
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the	amount	of	data	potentially	collected.	Various	software	packages	
are	 available	 to	 help	with	metadata	 associated	with	 the	 recordings	
(e.g.	Roch	et	al.,	2013).	An	 increasing	number	of	sound	archives	are	
becoming	publicly	available	resources	to	store	sounds	and	share	them.	
The	most	extensive	and	well	known	of	them	is	the	Macaulay	Library	
hosted	at	Cornell	University.	These	sound	archives	are	also	valuable	
tools	 to	share	species	specific	sounds;	however,	 too	few	freshwater	
sounds	are	available	 in	existing	archives	 (Linke,	Gifford,	et	al.,	2018;	
Rountree,	Bolgan,	&	Juanes,	2018).

4.3 | Signal analysis

Passive	 acoustic	 monitoring	 allows	 the	 collection	 of	 terabytes	 of	
data	with	little	effort.	These	raw	data	then	require	processing.	Two	
main	routes	for	automatic	signal	processing	are	currently	under	de‐
velopment.	This	section	provides	an	overview	of	those	two	routes	
as	well	as	some	strategic	references	to	get	started	on	the	subject.

4.3.1 | Recognition of individual sound 
events and signals

Signal	recognition	uses	elaborate	techniques	such	as	template	match‐
ing	or	machine	 learning	 to	extract	and	classify	 signals	 from	raw	en‐
vironmental	 recordings.	There	 is	a	suite	of	methods	available;	either	
supervised—when	 the	 signals	 of	 interest	 are	 known;	 or	 unsuper‐
vised—when	the	algorithms	are	not	optimised	with	a	prior	database	
(Ulloa,	Aubin,	Llusia,	Bouveyron,	&	Sueur,	2018).	Detection	methods	
vary	from	relatively	simple	methods	based	on	estimates	of	amplitude	
level	of	a	species‐specific	frequency	band	(e.g.	Desjonquères,	Rybak,	
Ulloa,	et	al.,	2018;	Dutilleux	&	Curé,	2018)	 to	more	 refined	pattern	
recognition	via	cross‐correlation	 (Ulloa	et	al.,	2016)	as	well	 as	more	
complex	methods	using	machine	learning	(e.g.	Morfi	&	Stowell,	2018;	
Xie,	Towsey,	Zhang,	&	Roe,	2016;	Zhang,	Towsey,	Zhang,	&	Roe,	2017).	
Automatic	 detection	 and	 classification	methods	usually	 first	 involve	
feature	extraction	and	then	classification	of	these	features	(Sharan	&	
Moir,	2016).	These	methods	have	mainly	been	developed	for	bird	vo‐
calisations	(Priyadarshani,	Marsland,	&	Castro,	2018)	but	are	increas‐
ingly	 applied	 to	 other	 taxa	 (Ganchev,	 Potamitis,	 &	 Fakotakis,	 2007;	
Himawan,	Towsey,	Law,	&	Roe,	;	Risch	et	al.,	2014;	Xie	et	al.,	2016).

These	analysis	tools	are	implemented	in	a	variety	of	software.	
The	 newest	 detection	 methods	 are	 usually	 initially	 developed	
as	 custom	made	 scripts	 in	 coding	 environments	 such	 as	Matlab	
(Mathworks),	R	(R	Core	Team,	2015)	or	Python	(Python	Software	
Foundation).	Some	coding	environments	also	have	entire	packages	
dedicated	to	sound	detection	such	as	XBAT,	Osprey,	or	Triton	 in	
Matlab	as	well	as	monitoR	in	R.	Automatic	tools	can	also	be	imple‐
mented	in	sound	analysis	software	such	as	Raven	(Cornell	Lab	of	
Ornithology).

The	success	of	the	detection	of	sounds	in	environments	can	be	
hindered	by	the	presence	of	noise	and	other	masking	sounds	such	
as	other	species	calling	simultaneously	(Priyadarshani	et	al.,	2018).	
These	methods	are	essential	for	the	development	of	real	time	moni‐
toring	(Aide	et	al.,	2013).	Freshwater	applications	include	automatic	

detection	 of	 an	 invasive	 fish	 (Kottege	 et	 al.,	 2015),	 detection	 of	
spawning	events	(Straight	et	al.,	2014)	and	monitoring	of	endangered	
species	(Dutilleux	&	Curé,	2018).

4.3.2 | Acoustic indices

Given	 the	 current	 biodiversity	 crisis,	 estimating	 species	 diversity	
and	contrasting	species	communities	 is	paramount	 to	 inform	deci‐
sion	making	in	conservation	biology.	A	diversity	of	species	produces	
sounds.	This	acoustic	diversity	can	be	used	to	extract	 information	
on	species	richness	(Buxton,	Agnihotri,	Robin,	Goel,	&	Balakrishnan,	
2018;	 Pieretti	 et	 al.,	 2011;	 Pijanowski,	 Farina,	 Gage,	 Dumyahn,	 &	
Krause,	2011;	Sueur,	Pavoine,	et	al.,	2008);	however,	 the	 relation‐
ships	between	acoustic	and	species	diversity	are	not	always	straight‐
forward	 (Linke,	Decker,	et	al.,	2018).	Soundscape	composition	can	
be	quantified	using	acoustic	 indices.	As	with	classic	diversity	 indi‐
ces	such	as	species	richness	or	evenness,	acoustic	diversity	indices	
are	mathematical	 functions	designed	to	examine	different	aspects	
of	 sounds	 and	 represent	 some	 characteristics	 of	 the	 biodiversity	
(Sueur,	Farina,	Gasc,	Pieretti,	&	Pavoine,	2014).

A	wide	variety	of	indices	have	been	developed	in	the	last	decade,	
each	 tuned	 to	 detect	 specific	 attributes	 of	 the	 soundscape	 (Gage,	
Towsey,	&	Kasten,	2017;	Sueur	et	al.,	2014).	Two	main	types	of	acous‐
tic	indices	can	be	distinguished,	similarly	to	ecological	indices:	α and 
β	indices.	Alpha	indices	quantify	some	attributes	of	one	soundscape,	
while	β	indices	allow	the	comparison	between	soundscapes.	Acoustic	
indices	can	measure	overall	amplitude	of	a	recording	(M,	Depraetere	
et	al.,	2012),	diversity	of	 frequency	with	 the	spectral	entropy	 index	
(Hf;	 Sueur,	 Pavoine,	 et	 al.,	 2008),	 or	 the	 acoustic	 diversity	 index	
(Villanueva‐Rivera,	Pijanowski,	Doucette,	&	Pekin,	2011)	or	acoustic	
complexity	 index	(Pieretti	et	al.,	2011).	These	 indices	have	been	ap‐
plied	to	various	terrestrial	and	marine	environments	(Buscaino	et	al.,	
2016;	Fuller	et	al.,	2015;	Gasc	Sueur,	 Jiguet	et	al.,	2013)	and	to	de‐
tect	variation	in	biodiversity	patterns	relating	to	different	levels	of	ur‐
banisation	(Kuehne	et	al.,	2013)	or	different	ecosystems	(Depraetere	
et	al.,	2012).	Most	of	these	indices	are	built	into	free	access	R	pack‐
ages	such	as	seewave	(Sueur,	Aubin,	&	Simonis,	2008)	or	soundecology 
(Villanueva‐Rivera,	Pijanowski,	&	Villanueva‐Rivera,	2018).	Two	main	
avenues	of	application	can	be	distinguished	for	acoustic	indices:	(1)	es‐
timation	of	biodiversity,	and	(2)	contrasting	spatio‐temporal	variations.

Although	the	accuracy	of	acoustic	indices	for	measuring	species	
diversity	 has	 been	 demonstrated	 in	 some	 environments	 (Buxton	
et	al.,	2018;	Pieretti	et	al.,	2011;	Sueur,	Pavoine,	et	al.,	2008),	they	
appear	to	need	adjustment	in	freshwater	ponds	due	to	the	low	sig‐
nal‐to‐noise	ratios	(Desjonquères	et	al.,	2015),	as	with	marine	envi‐
ronments	(Parks	et	al.,	2014).	To	overcome	this	issue,	audio	filtering	
techniques	could	potentially	help	reduce	noise	or	enhance	signals	of	
interest.	Another	suggested	avenue	of	 research	on	acoustic	diver‐
sity	methods	 recommends	combination	of	several	acoustic	 indices	
that	reveal	complementary	aspects	of	the	soundscape,	either	using	
false	colour	spectrogram	(Indraswari	et	al.,	2018;	Towsey,	Wimmer,	
Williamson,	&	Roe,	2014)	or	neural	networks	(Gómez	et	al.,	2018).	
Yet	another	option	suggests	bringing	together	automatic	detection	
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of	 single	 sound	 events	 and	 classification	 of	 basic	 elements	 of	 the	
soundscape	or	sound	types	to	identify	acoustic	diversity	in	sound‐
scape	recordings.	These	new	methods,	currently	emerging,	might	be	
less	sensitive	to	environmental	noise	 (Eldridge,	Casey,	Moscoso,	&	
Peck,	 2016;	 Phillips,	 Towsey,	&	Roe,	 2018;	Ulloa	 et	 al.,	 2018)	 and	
would	be	interesting	to	apply	in	freshwater	environments.

Acoustic	indices	can	also	be	used	to	detect	and	contrast	acoustic	
communities	 sampled	 in	different	habitat	 types	or	at	different	 times	
(Buscaino	 et	 al.,	 2016;	 Gasc,	 Sueur,	 Pavoine,	 et	 al.,	 2013;	 Retamosa	
Izaguirre,	Ramírez‐Alán,	&	De	la	O	Castro,	2018;	Rodriguez	et	al.,	2014).	
Acoustic	 indices	 have	 also	 been	 applied	 in	 freshwater	 streams	with	
some	 success;	 for	example,	 Linke,	Decker,	 et	 al.	 (2018)	were	able	 to	
detect	onset	and	end	of	major	acoustic	events	such	as	fish	and	insect	
choruses	in	freshwater	environments.	Acoustic	indices	allow	discrimi‐
nation	of	different	temporal	or	ecological	conditions	in	freshwater	en‐
vironments.	The	use	of	acoustic	 indices	has	 to	be	calibrated	 to	each	
setting—for	 example	 bird	 responses	 to	 restoration	 efforts	 in	 forests	
have	been	best	characterised	using	Acoustic	Entropy	by	Ng,	Butler,	and	
Woods	(2018),	whereas	on	floodplains,	M	and	ACI	were	the	only	indices	
that	were	able	to	quantify	increased	activity	(Linke	&	Deretic,	2018).

4.4 | Linking ecology and acoustics

Once	acoustic	recordings	have	been	analysed,	an	important	remain‐
ing	step	is	to	relate	extracted	acoustic	attributes	to	environmental	
data.	This	requires	statistical	analyses	such	as	linear	models	(Fuller	
et	al.,	2015),	random	forest	(Buxton	et	al.,	2018)	or	neural	networks	
(Gómez	et	al.,	2018).	Acoustic	datasets	can	be	challenging	 to	ana‐
lyse	as	they	are	usually	time	series,	 i.e.	 repeated	measurements	at	
the	same	location	but	different	time.	Although	this	challenge	consti‐
tutes	one	of	PAM's	biggest	strengths	as	it	allows	studying	environ‐
ments	continuously,	it	can	also	be	problematic	for	statistical	analysis	
due	to	the	non‐independence	of	data	points.	Non‐independence	of	
data	points,	if	it	is	not	accounted	for,	may	result	in	spurious	signifi‐
cance	(Forstmeier,	Wagenmakers,	&	Parker,	2016).	This	potential	for	
spurious	significance	is	rarely	accounted	for	in	ecoacoustic	studies.	
However,	 there	 are	 several	ways	 to	 account	 for	 it	 or	mitigate	 the	
risk;	 for	 example,	 in	Desjonquères,	Rybak,	Ulloa,	 et	 al.	 (2018),	 the	
use	of	functional	linear	models	allow	to	take	the	temporal	variation	
into	account	with	a	sum	of	sine	and	cosine	functions.	Another	op‐
tion	if	one	is	not	 interested	in	the	temporal	variation	is	to	average	
the	acoustic	data	over	several	hours	or	days	(Bertucci,	Parmentier,	
Lecellier,	Hawkins,	&	Lecchini,	2016;	Desjonquères,	Rybak,	Castella,	
et	al.,	2018).	Finally,	linear	models	can	also	include	another	variable	
that	varies	over	time	and	thus	can	account	for	the	temporal	variation	
such	as	temperature	or	using	correlational	data	rather	than	hypoth‐
esis	testing	(Bohnenstiehl,	Lillis,	&	Eggleston,	2016).

5  | CONCLUSION

This	 article	 discusses	 the	 potential	 applications	 of	 PAM	 in	 fresh‐
water	 environments	 for	 freshwater	 biology	 and	 ecology.	 Passive	

acoustic	monitoring	could	be	used	to	monitor	key	species	and	eco‐
sytem	processes.	More	 specifically,	 it	 could	potentially	 be	 applied	
to	the	 localisation	of	rare,	 invasive	or	threatened	species,	or	allow	
the	 identification	of	eutrophication	environments	with	 the	sounds	
of	respiration.	This	review	highlights	several	areas	in	which	further	
developments	 are	 needed	 before	 PAM	 can	 be	 operationalised	 in	
freshwater	 environments.	 It	 is,	 in	 particular,	 essential	 to	 describe	
underwater	 sounds,	 to	develop	 robust	detection	methods	 and	as‐
sess	 spatio‐temporal	 variations.	Nevertheless,	 PAM	already	offers	
benefits	to	freshwater	monitoring	by	allowing	for	low	cost,	noninva‐
sive	and	continuous	surveys.	This	review,	as	part	of	the	special	issue	
“Acoustic methods in freshwater systems: A new frontier in continuous 
system monitoring”,	highlights	the	broad	interest	of	PAM	for	freshwa‐
ter	ecologists.	Overall,	PAM	appears	as	a	promising	tool	to	continu‐
ously	monitor	and	mitigate	current	freshwater	environmental	crises.
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