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Abstract

1. Acoustic population monitoring is a noninvasive method that can be deployed con-

tinuously over long periods of time and at large spatial scales. One of the newly

discovered threats acting on biological diversity is anthropogenic noise. High levels

of anthropogenic noise occur in aquatic environments, yet their effects on animals

living in freshwater habitats have very rarely been investigated.

2. Here, we used acoustic monitoring and automatic detection to assess the acous-

tic activity of a population of a soniferous freshwater insect.

3. The sounds emitted by the corixid Micronecta scholtzi were recorded in a

Mediterranean pond with an array of 12 hydrophones. An automatic analysis

based on a measure of the amplitude found in the frequency band of M. scholtzi

was developed to assess the level of acoustic activity. We used functional linear

models, accounting for the periodicity of the calling behaviour, to estimate the

possible effect of temperature, vegetation and a noise due to an immersed

engine.

4. The automatic analysis was validated as an efficient method to measure the

acoustic activity. The monitoring revealed a clear 24-hr pattern in the acoustic

activity of M. scholtzi and three peaks of activity during the morning. Functional

linear models revealed negative effects of both temperature and vegetation and

showed that an engine noise, played back for 2 hr during the night, elicited an

increase in the level of acoustic activity of the population. Moreover, a cross-

correlation procedure showed that noise delayed the acoustic activity of the

population.

5. Our results suggest that acoustic survey and automatic detection are efficient

methods to monitor the acoustic activity of an insect population especially in

response to an anthropogenic disturbance.
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1 | INTRODUCTION

Current environmental degradations, including climate change, habi-

tat destruction, chemical pollution and anthropogenic noise, impact

negatively on natural populations by reducing individual fitness

(Groom, 2006). Efficient population monitoring is a key requirement

to understand population dynamics induced by these changes and to

take appropriate conservation measures. There is an important
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diversity of methods to monitor populations, from traditional field

observation to satellite remote sensing (Le Galliard, Guarini, & Gaill,

2012). Among these census techniques, the sound produced by ani-

mals has been suggested as a potential indicator of population sta-

tus. The use of acoustics started with elementary aural information

collected by individual observers (Hutto & Stutzman, 2009). It is now

developing quickly with the recent advent of autonomous recorders

that can sample audio data regularly over months (Blumstein et al.,

2011). Acoustic monitoring therefore appears as a valuable solution

to monitor populations of soniferous animals, such as birds, arthro-

pods, amphibians and mammals, with a reasonable workforce and

expertise (Laiolo, 2010; Sueur & Farina, 2015). It can be employed

to continuously assess the impacts of human‐induced disturbances

such as climate change (Krause & Farina, 2016) or anthropogenic

noise (Barber et al., 2011; Pieretti & Farina, 2013).

Noise pollution due to human activities has been identified as

a growing global threat for marine and terrestrial environments

(Hildebrand, 2009; McGregor, Horn, Leonard, & Thomsen, 2013).

Continuous noises related to transportation and industry and seismic

surveys are produced at such pressure levels that they can injure

individuals (Popper & Hastings, 2009; Popper et al., 2005), mask

communication signals (Fletcher, 2007) or lead to significant modifi-

cations in population size, density and demography (Laiolo, 2010).

The extent to which noise impacts on natural populations has been

mainly assessed in marine and terrestrial environments (Andrew,

Howe, & Mercer, 2011; Barber et al., 2011) but rarely in freshwater

environments despite a high degree of anthropisation affecting lakes,

ponds and rivers (Dudgeon et al., 2006). The anthropisation of fresh-

water environment is accompanied by the expansion of water‐borne
sources of noise related to recreational activities, boat transportation

and sediment extraction (Bolgan et al., 2016). High‐level noise in

freshwater environments may have a strong impact on animal popu-

lations as observed in marine environments (Tyack & Janik, 2013).

The potential effects of anthropogenic noise are usually assessed

at the individual level by estimating either physiological or beha-

vioural changes (Brumm, 2004). These behavioural adaptations have

been mainly reported in birds, amphibians and mammals but only

rarely in insects although the diversity of their sounds often domi-

nates the acoustic space (Costello & Symes, 2014; Orci, Petróczki, &

Barta, 2016; Stanley, Walter, Venkatraman, & Wilkinson, 2016).

These adjustments at the specific level are also thought to alter non-

soniferous species communities (Solan et al., 2016), by impacting, for

example, predation (Simpson et al., 2016), or whole ecosystem and

communities (Francis, Kleist, Ortega, & Cruz, 2012) suggesting the

occurrence of cascading impacts of noise.

Our goal was to develop and test a monitoring technique to reg-

ularly track in space and time the acoustic activity of a population of

an aquatic chorusing species. Micronecta scholtzi (Corixidae) is a 2–
2.5 mm water bug commonly found in temperate freshwater envi-

ronments. The males of M. scholtzi produce an extremely intense

stridulation (Reid, Hardie, Mackie, Jackson, & Windmill, 2018; Sueur,

Mackie, & Windmill, 2011; Supporting information Figure S1a) that

is likely to be involved in intra‐ and intersexual interactions (King,

1999a). The acoustic communication of M. scholtzi and other Micro-

necta species has mainly been studied in laboratory conditions, but

field observations showed that thousands of M. scholtzi individuals

aggregate in dense populations where males form continuous and

loud choruses (Jansson, 1977a). This insect is therefore a good can-

didate for acoustic monitoring in an aquatic environment. We first

coined an automatic acoustic process to detect acoustic activity and

to estimate its periodicity over days. We used functional data analy-

sis to identify the environmental variables that could influence the

spatiotemporal organisation of the population. At last, we used play-

back of anthropogenic noise to test whether the level and timing of

acoustic activity could allow the detection of responses to a change

in the environment.

2 | METHODS

2.1 | Study site and data collection

The study site consisted in a Mediterranean pond artificially created

in 1992 in the village of Vidauban (Var, France, 43°23′35.0″N 6°27′
42.3″E). The pond had an approximate surface of 400 m² with a

width ranging from 15 to 22 m (Figure 1). The floor of the pond was

made of concrete covered by a layer of soft sediments varying in

thickness between 0 and 10 cm. The pond was partly covered by

vegetation composed of a single alga species, Chara globularis. The

spatial limits of the vegetation were visually assessed from aerial pic-

tures taken with a drone (Figure 1), and its growth was estimated

every week from the bank of the pond.

The pond was equipped with a network of twelve recording sta-

tions each separated by 4.13 ± 0.88 m (mean ± SD, Figure 1) to the

nearest neighbour. This distance was chosen to ensure a reasonable

F IGURE 1 Aerial photography showing the location of the
recording stations in the pond. The green shaded areas indicate the
location of the vegetation, and the numbers indicate the location of
each recording station
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spatial resolution as well as to avoid recording the same events in

neighbouring hydrophones. The water column depth at each record-

ing station was 0.96 ± 0.15 m. A recording station consisted in three

units: an autonomous audio recorder (Sound Meter 2+, Wildlife

Acoustics, Maynard, MA, USA), a hydrophone (HTI‐96, High Tech

Inc., Long Beach, MS, USA, flat frequency response between 20 Hz

and 40 kHz, sensitivity: −201 dB re: 1 V/μPa) and a thermometer

(HOBO Pendant Temperature Data Logger, Onset, Bourne, MA,

USA, precision: 0.10°C). The recorder was attached to a tree near

the pond. The hydrophone was attached to a rope stretched

between a diving weight acting as an anchor and a plastic bottle act-

ing as a buoy. The plastic bottle was filled with polystyrene chips to

reduce sound reflections. The hydrophone was maintained at 0.25 m

above the sediment, with the piezoelectric sensor directed towards

the bottom of the pond. The hydrophones were tested in the labora-

tory to ensure their frequency responses were identical. The ther-

mometer was attached to the plastic bottle.

The audio recorders were set up to record one minute every

15 min (1 min of recording/14 min of rest, 96 recordings per 24 hr)

during 21 days from June 16 to July 7, 2015. The clock of the

twelve audio recorders was synchronised with a digital watch so that

the twelve stations worked simultaneously. The 24,192 audio files

(12 hydrophones × 21 days × 96 recordings per 24 hr) were stored

on SD memory cards as uncompressed.wav files at a 44.1 kHz sam-

pling frequency and a 16‐bit digitisation depth. The water tempera-

ture was recorded at the start of each audio recording.

2.2 | Automatic quantification of acoustic activity
level in M. scholtzi population

2.2.1 | Measure of the acoustic activity level

Assemblages of acoustically signalling individuals are a widespread col-

lective behaviour among insects and amphibians (Gerhardt & Huber,

2002). Such aggregation form choruses where individual calls are not

identifiable. Instead, the multiple calls are merged to a continuous

sound over a specific frequency band. In M. scholtzi, this frequency

band spans from 7 to 12 kHz that cannot be mistaken with any other

sound production in this pond as no other species produce sound in

this frequency range (Supporting Information Figure S1). A method

was designed to automatically quantify the level of acoustic activity of

a dense monospecific chorus such as the one formed by M. scholtzi

based on a measure of the amplitude found in the frequency band of

M. scholtzi. To measure the amplitude in this frequency band, a short‐
time Fourier transform (STFT) was applied to each recording. STFT is a

standard method to analyse the frequency composition of a digital sig-

nal. It consists in segmenting a signal in a succession of regular time

windows and in computing the Fourier transform for each window.

The Fourier transform decomposes the signal framed by each window

into a limited number of Fourier coefficients corresponding to discrete

frequencies. Here, the STFT was computed with a window length of

512 samples, a Hanning window type and no window overlap. The

Fourier coefficients were not scaled such that the short‐time Fourier

transform returned a matrix of raw amplitude values which were com-

parable between every 1‐minute recordings. The STFT resulted in an

amplitude matrix with frequency bins as rows and time windows as

columns. The amplitudes were averaged by row (i.e., over time) to

obtain mean values of amplitude per frequency bin over the whole

recording, that is, to obtain a mean frequency spectrum. Again, no

scaling was applied at this stage so that the amplitude values were raw

values. The amplitude values of the mean spectrum for frequencies

between 7 and 12 kHz were summed (Supporting Information Fig-

ure S2). This amplitude, hereafter referred to as A7-12 or log10(A7-12)

when log‐transformed, was computed with the seewave R package

(version 2.0.4, Sueur, Aubin, & Simonis, 2008).

2.2.2 | Assessment of the accuracy of the measure

To assess the accuracy of A7-12 to quantify the level of activity of M.

scholtzi in a recording, an aural assessment was conducted.

The aural assessment was achieved by C.D. who investigated the

first 10 s of a subset of recordings, listening to them and visualising

their spectrogram with the audio software Audacity (D. Mazzoni,

http://audacity.sourceforge.net/). The aural assessment was carried

out on the recordings obtained at three different days covering the

sampling period (19/06/2015, 27/06/2015 and 04/07/2015) and at six

different times of the 24‐hr cycle (00:00 am, 02:00 am, 08:00 am,

12:00 am, 04:00 pm and 08:00 pm) resulting in 216 files (12 hydro-

phones × 3 days × 6 times). The 02:00 am file was selected instead

of the file recorded at 04:00 am to avoid recordings in which noise

was played back, see Results subsection Activity of the population in

the absence of an anthropogenic noise. A four‐level listening score was

designed to classify M. scholtzi's level of activity in each recording

(Supporting Information Figure S1c–f): 0: no activity; 1: distinct tem-

poral pattern with a low repetition rate (less than 13 calls in 10 s,

corresponding to an estimation of one individual singing continu-

ously; Sueur et al., 2011); 2: distinct temporal pattern with a high

repetition rate (more than 13 calls in 10 s, corresponding to more

than one individual singing continuously); and 3: temporal pattern not

identifiable (corresponding to a high density of individuals singing

continuously). A classification tree was used to assess the accuracy of

A7-12 (Breiman, Friedman, Stone, & Olshen, 1984). In this classifica-

tion tree, A7-12 was set as the univariate predictor variable and the

listening score as the response variable. The overall accuracy of the

tree was used to quantify the correspondence between A7-12 values

and the listening score. This analysis was conducted in R using the

rpart package (version 2.15.0, Therneau, Atkinson, & Ripley, 2010).

2.2.3 | Control for the effect of background sound
level

The background sound level was quantified by measuring A12-22, the

summed amplitude values of the mean spectrum for frequencies

between 12 and 22 kHz. This frequency band was selected as it was

outside Micronecta scholtzi's frequency band and did not contain

any other species’ sound. The relationship between A7-12 and A12-22
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was linear, positive and highly significant (F‐statistic: 5.3 106;

adjusted R2: 0.9956; df: 1, 23498, p‐value < 0.001, Supporting

Information Figure S3). Such a strong relationship indicated that the

background noise was entirely determined by the level of activity of

M. scholtzi. Background sound level was therefore not considered in

further analyses.

2.3 | Effect of temperature and vegetation on the
acoustic activity of M. scholtzi population

The periodicity of the acoustic activity of M. scholtzi population

was estimated by applying a Fourier analysis on the time series of

log10(A7-12) measured during 7 days, from the 16th to the 21st of

June, in the absence of external noise disturbance. The major peak on

the amplitude spectrum of the signal was found for a period of 24 hr.

The time (hour) of maximum acoustic activity of M. scholtzi was

therefore assessed by looking within 24‐hr windows. The time of

maximum acoustic activity was estimated as the median of all the

times of maximum A7-12 values obtained within the 24‐hr windows

for the 7 days of observations and the 12 recording stations.

Functional data analysis is a statistical procedure using mathe-

matical functions to describe and model smooth variation of a vari-

able. A functional linear model was used to test the importance of

the effects of temperature and vegetation (explanatory variables) on

the acoustic activity level of M. scholtzi estimated with log10(A7-12)

(response variable). The formula of the model was the following:

yij = μ + αi+βxij + εij

where yij is log10(A7-12), i is the index for the vegetation, j is the

index for the recording station within a vegetation group, μ is a con-

stant, αi is the vegetation coefficient, β is the temperature coeffi-

cient, xij is the temperature, and εij is the error term.

As the temperature and acoustic activity level were periodic time

series, a Fourier basis, that is, a linear combination of sine and cosine

functions with specific frequencies, was used to turn them into func-

tional data. The order of the Fourier basis (i.e., the number of sine and

cosine in the linear combination) was selected through the observation

of the residual part of the function, that is, the pairwise difference

between the original signal (log10(A7-12) or temperature) and the

reconstructed signal. The order of the Fourier basis was selected so

that the residual part of the model could be considered as random

noise and the variance explained by the model was at least of 85%.

This comparison led to the selection of a 49 order Fourier basis for

both log10(A7-12) and temperature. The presence or absence of aquatic

vegetation at the hydrophone was encoded as a two‐level factor

(Figure 1). Vegetation was modelled with a constant basis only varying

between recording stations as vegetation did not change over the time

of the study. The time of day was not added in the model because it

was highly correlated with the temperature. Because functional linear

models’ theoretical null distribution of test statistics is not known, per-

mutation tests were run to test the significance of the model (Ramsay,

Hooker, & Graves, 2009). To assess the effect of the vegetation factor,

the two levels of the factor were permuted and the explained variance

of the initial model was compared to the explained variance of the per-

muted models. Temperatures were first permuted within each record-

ing station among days to test for an effect of the daily temperature.

Temperatures were then similarly permuted over the 7 days of record-

ing to test for an instantaneous effect of temperature. A bootstrap

procedure was used to derive confidence intervals for the coefficients

of the model. All functional data analyses were conducted with

R (R Core Team, 2015) using the FDA package (version 2.4.7, Ramsay,

Wickham, Graves, & Hooker, 2014).

2.4 | Effect of anthropogenic noise on the acoustic
activity of M. scholtzi population

The effect of noise on the timing and level of the acoustic activity

of M. scholtzi population was tested using the engine noise of a

water pump. The engine of the pump produced a broadband noise

with an irregular spectrum, covering M. scholtzi’s frequency band

(Supporting Information Figure S1b). This engine could be turned on

and off without running the pump such that only noise but no water

flow was generated. The engine had never been turned on during

the year of the experiment, making this noise an entirely new distur-

bance to this M. scholtzi yearly population.

The response of M. scholtzi to noise was estimated on the long

term by conducting a 3‐week experiment, divided into 3 one‐week‐
long phases. During the first week (16th to 23rd of June), the engine

was switched off so that the pond was left undisturbed (pre-

treatment). During the second week (23rd to 30th of June), the

engine was switched on according to a 24‐hr schedule described

below (treatment). At last, during the third week (30th of June to

7th of July), the engine was switched off so that the pond was left

undisturbed again (post-treatment).

The engine noise and the signal produced by M. scholtzi overlapped

in time and frequency (Supporting Information Figure S1b) such that it

was not possible to disentangle the noise and signal sources. There-

fore, the recordings achieved when the engine was turned on were

excluded from the analysis. The engine noise was generated for 2 hr

each 24‐hr cycle that is during 8% of the activity period of M. scholtzi,

a duration allowing a significant time of exposition to noise while

enabling an extrapolation of missing values through a Holt‐Winters fil-

tering. As the median time of maximum activity was estimated to

occur at 5:15 am (see Results), the engine of the pump was turned on

between 3:00 and 5:00 am everyday during the treatment week.

The noise was generated during the part of the activity cycle

with an increase in activity, right before the peak of activity so that

the activity could either increase or decrease.

2.4.1 | Statistical procedure to test the effect of
noise on the acoustic activity level

The null hypothesis (H0) was that the acoustic activity level was

stable during the experiment, and the alternative hypothesis was

that the acoustic activity was different in at least one experimental

phase (H1).
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To test the effect of the experimental treatment, a functional model

similar to the one described above was used, including log10(A7-12) as

the response variable and the temperature, the vegetation and the treat-

ment as explanatory variables. The following model was implemented:

yijk = μ + αi + βxijk + γk + εijk,

with yi the log10(A7-12), i the index for the vegetation with a value of 1

for the absence of vegetation and 2 for the presence of vegetation, j the

index for the recording station within a vegetation group (absence or

presence), k the index for the experimental phase (1 for pretreatment, 2

for treatment and 3 for post-treatment), μ a constant, αi the vegetation

coefficient, β the temperature coefficient, xijk the temperature, γk the

coefficient for the experimental phase and εijk the error term.

The order of the Fourier basis was selected so that the residual

part of the model could be considered as random noise and the vari-

ance explained by the model was at least of 85%. A set of 148 order

Fourier basis was used to approximate temperature and log10(A7-12).

A permutation procedure was used to assess the effect of the treat-

ment on the acoustic activity level, permuting the three experimental

phases. The confidence intervals for the estimated coefficients were

derived using a bootstrap procedure.

2.4.2 | Statistical procedure to test the effect of
the noise on the acoustic activity timing

The null hypothesis (H0) was that the timing of activity was the same

throughout the duration of the experiment; the alternative hypo-

thesis was that the timing of activity differed in at least one of the

experimental phases (H1).

A cross‐correlation procedure was used for each recording sta-

tion to estimate the time shift between the three pairs of time series

obtained pairing the pretreatment, the treatment and the post-

treatment. The time series were scaled (mean of 0 and standard

deviation of one) over 24 hr. Within each pair of experimental

phase, the time shift of maximum correlation between the two time

series was assessed. The mean of the time shifts observed at each

of recording station was computed and treated with a permutation

test including 1000 permutations. The confidence intervals of the

time shifts were estimated with a bootstrap procedure.

As shift in acoustic activity timing could also be due to tempera-

ture and/or sunrise/sunset time changes, the cross‐correlation proce-

dure was also run on the temperature time series and the sunrise/

sunset times were compared among the different experimental

phases (http://sunrisesunsetmap.com).

3 | RESULTS

3.1 | Validation of the quantification of the level of
acoustic activity

When considering all the 24,192 files, the relative amplitude mea-

sured between 7 and 12 kHz A7-12 had an average value of

1.02 · 106 ± 1.01 · 106 and ranged from 7.37 · 104 to 1.16 · 107 on

a 216 bit scale without unit scale. When considering the 216 files

selected for the validation of the quantification of the acoustic activ-

ity level, A7-12 fell into the same range of variation with an average

value of 8.65 · 105 ± 9.33 · 105.

The 216 selected files were distributed in the four listening

scores, with abundances ranging from 14 for score 1 to 119 for

score 3. When no activity was detected, A7-12 had an average value

of 1.16 · 105 ± 3.56 · 103 (n = 29) indicating a low variation in the

background sound level.

The tree revealed 83.8% of overall accuracy in classification of

A7-12 into listening scores. According to our expectations, A7-12

increased with the listening score (Figure 2).

3.2 | Activity of the population in the absence of
an anthropogenic noise

The acoustic activity of M. scholtzi estimated with log10(A7-12) during

the pre-treatment phase showed a regular 24‐hr pattern with three

peaks of activity, a major peak at 5:15 am and two secondary peaks

at 9:00 am and 11:30 pm (Figure 3).

The functional linear model revealed a significant negative rela-

tionship between the acoustic activity log10(A7-12) and vegetation

(permutation test: 1000 permutations, p‐value < 0.01, Figure 4a,

F IGURE 2 Relationship between the listening score and the
acoustic activity log10(A7-12). Box plot showing the 25%, 50% and 75%
quartiles. The outliers measured as Q1 – 1.5 * IQD and Q3 + 1.5 *
IQD are drawn as points (with Q1, the first quartile; Q3, the third
quartile; and IQD, the interquartile distance). The listening score was
scaled according to 0: no activity; 1: distinct temporal pattern, with a
low repetition rate (less than 13 calls in 10 s, corresponding to an
estimation of one individual singing continuously, Sueur et al., 2011);
2: distinct temporal pattern, with a high repetition rate (more than 13
calls in 10 s, corresponding to more than one individual singing
continuously); and 3: temporal pattern not identifiable (corresponding
to a high density of individuals singing continuously). See Supporting
Information Figure S1 for spectrograms and oscillograms illustrating
the different levels
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Table 1). There was no significant relationship between daily temper-

ature and the acoustic activity log10(A7-12) (permutation test: 1000

permutations, p‐value = 0.95), indicating that the observed variation

of temperature between days did not influence the acoustic activity.

There was a negative relationship between the acoustic activity

log10(A7-12) and the instantaneous temperature (permutation test:

1000 permutations, p‐value < 0.001, Table 1) with similar acoustic

activity peaks at temperatures of 26.5 and 28°C, corresponding to

the temperatures recorded between 5:00‐6:00 am and at 11:00 pm

F IGURE 3 Time series of log10(A7-12) estimated at the recording
station 12 for the first experimental phase (pretreatment). The blue
points are the values obtained for the recordings obtained every
15 min, and the orange line shows the functional model. The time is
expressed as days with shaded areas highlighting the night with
sunset at 9:00 pm and sunrise at 6:00 am. The time series shows a
periodic pattern with one main peak of activity at 5:15 am and two
secondary peaks at 9:00 am and 11:30 pm corresponding to the
dotted vertical lines

F IGURE 4 Relationship between log10(A7-12) and vegetation (a), and instantaneous temperature (b). (a). Box plot of log10(A7-12) according to
vegetation showing the 25%, 50% and 75% quartiles and the outliers measured as Q1 – 1.5 * IQD and Q3 + 1.5 * IQD are drawn as points
(with Q1, the first quartile; Q3, the third quartile; and IQD, the interquartile distance). The bars in each box show the estimation of the
functional model and the 95% confidence interval for these estimations. (b). Scatter plot of log10(A7-12) in function of instantaneous
temperature. The red line shows the fitted functional linear model, and the orange lines show the 95% confidence interval around the fitted
values. The lower limit of log10(A7-12) values (5.03) corresponds to an absence of acoustic activity

TABLE 1 Results of the functional linear model for the first
experimental phase (pretreatment). The estimate, the 95% lower and
upper confidence intervals (CI), the functional version of the
F‐statistic (Fstat), the number of degrees of freedom (df) and the
p‐values (p-val) are reported for each model term

Term Estimate CIlower CIupper Fstat df p-val

Intercept 5.75 5.66 5.83 a a a

Temperatureb −0.11 − 0.14 −0.08 0.35 1 0

Vegetationc −0.17 −0.42 −0.06 a a a

Note. aNot shown because of having no meaningful interpretation. bOrig-
inal mean and standard deviation of 27.93 and 1.86°C, respectively.
cVegetation was dummy coded with the absence of vegetation as the
reference level.
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(Figure 4b). Thus, the instantaneous temperature influenced nega-

tively the acoustic activity.

3.3 | Effect of noise on the acoustic activity of
M. scholtzi population

3.3.1 | Level of acoustic activity

The functional linear model showed estimations of the vegetation

and temperature effects similar to the previous model only based on

pre-treatment phase (Table 2), with significant negative effects of

vegetation (permutation test: 1000 permutations, p‐value < 0.01)

and instantaneous temperature (permutation test: 1000 permuta-

tions, p‐value < 0.05). This model also revealed a significant effect of

the experimental phase (permutation test, 1000 permutations, pval <

0.01, Figure 5) indicating that at least one pair of factor level

differed. Checking for pairwise differences, a near significant differ-

ence between the pretreatment and treatment phases was found

(permutation test: 1000 permutations, Bonferroni corrected pval =

0.06, Table 2). The treatment increased the level of activity of M.

scholtzi. No other pairwise comparison showed a significant relation-

ship (permutation test: 1000 permutations, Bonferroni correction,

pretreatment vs. post-treatment: p‐value = 0.132, treatment vs. post-

treatment: p‐value = 1, Figure 5, Table 2).

3.3.2 | Timing of acoustic activity

The time series of log10(A7-12) showed a significant median positive

delay of 10.6 min during the treatment phase (pre-treatment vs.

treatment, permutation test: 1000 permutations, p‐value < 0.01,

Table 3) and of 13.9 min during post-treatment phase (pretreatment

vs. post-treatment, permutation test: 1000 permutations, p‐value <

0.001, Table 3). No significant changes appeared between the treat-

ment and post-treatment phases (treatment vs. post-treatment, per-

mutation test: 1000 permutations, p‐value = 0.168, Table 3).

The temperature was nonsignificantly delayed during the course

of the experiment (Table 3). The sunset time shifts were negligible

(Table 3). In contrast, sunrise times underwent delays which were

not negligible and of the same order of magnitude as log10(A7-12) for

the treatment vs. post-treatment comparison (pre-treatment vs.

treatment: 2 min; treatment vs. post-treatment: 3.4 min; and

pre-treatment vs. post-treatment: 5.4 min, Table 3).

The delays for sunrise time were lower in the pre-treatment vs.

treatment comparison than in treatment vs. post-treatment compar-

ison (2 and 3.4 min, respectively). If the delays of log10(A7-12) were

solely due to the sunrise delay, the delay log10(A7-12) of pre-treat-

ment vs. treatment would be expected to be smaller than the delay

of treatment vs. post-treatment. However, the absence of significant

delay for treatment vs. post-treatment indicates that sunrise is not

the only source of delay in the level of activity of M. scholtzi.

4 | DISCUSSION

Population monitoring is a crucial task for biodiversity assessment

and conservation. Acoustic monitoring appears as a potential solution

to survey populations of soniferous species. If several methods are in

development to acoustically track large animal species such as birds

(Bardeli et al., 2010; Furnas & Callas, 2015), frogs (Brandes,

Naskrecki, & Figueroa, 2006) or marine mammals (Risch et al., 2014;

Zimmer, 2011), almost no attempts have been made to survey insect

populations, and, in particular, aquatic insects (Ganchev, Potamitis, &

Fakotakis, 2007; Jeliazkov et al., 2016). Here, a simple method based

on an array of hydrophones and on the analysis of a single frequency

band energy is suited to follow the dynamics of acoustic activity of

the waterbug M. scholtzi. The method has the great advantages to be

noninvasive, time‐effective and easy to replicate, three fundamental

requirements for population monitoring studies (Blumstein et al.,

2011).

TABLE 2 Results of the functional linear model over 3 weeks
(pretreatment, treatment and post-treatment). The estimate, the 95%
lower and upper confidence intervals (CI), the functional version of
the F‐statistic (Fstat), the number of degrees of freedom (df) and the
p‐values (p-val) are reported for each model term

Term Estimate CIlower CIupper Fstat df p-val

Intercept 5.81 5.61 5.89 a a a

Temperatureb −0.15 −0.26 −0.12 0.65 1 0.03

Vegetationc −0.48 −0.59 −0.35 a a a

Treatmentd 0.25 0.18 0.43 a a a

Post-treatmentd 0.28 0.18 0.58 a a a

Note. aNot shown because of having no meaningful interpretation. bOrig-
inal mean and standard deviation of 29.34 and 2.21°C, respectively.
cVegetation was dummy coded with the absence of vegetation as the
reference level. dExperimental phase was dummy coded with the pre-
treatment phase as the reference level.

F IGURE 5 Relationship between log10(A7-12) and experimental
phase. Box plot showing the 25%, 50% and 75% quartiles. The outliers
are drawn as points measured as Q1 – 1.5 * IQD and Q3 + 1.5 * IQD
are (with Q1, the first quartile; Q3, the third quartile; and IQD, the
interquartile distance). The white arrow in each box shows the
estimation of the functional model for each experimental phase and
the 95% confidence interval for these estimations
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The success of this simple automatic detection is determined by a

single condition: there is no other species occupying the same fre-

quency band. The detection method could thus be applied to other

species, such as otherMicronecta species but also other aquatic insects

or even amphibians as long as they are the only occupant of a unique

frequency band. It is important to note that this method initially allows

for activity monitoring. To extend it to population monitoring, the

relationship between acoustic activity and population density needs to

be modelled. This step could be achieved by coupling acoustic and

classical population survey such as standardised netting.

This detection method coupled to efficient time series statistical

models allowed to track in space and time the acoustic activity of the

population. This method revealed important features on the phenol-

ogy and ecological preferences of M. scholtzi. First, the well‐defined
day and night pattern of acoustic activity suggests that sound produc-

tion of M. scholtzi is, at least partially, controlled by factors related to

solar and/or lunar cycles as observed for most soniferous terrestrial

species (Pijanowski, Farina, Gage, Dumyahn, & Krause, 2011). If the

method is to be extended to classical population survey, this temporal

variation in activity needs to be accounted for.

The ecological significance of M. scholtzi has not been estimated,

but other species of Micronecta have been identified as good indica-

tors of water quality in lakes (Jansson, 1977a). These species pro-

duce similar dense choruses for which this method would be

efficient. Therefore, this acoustic monitoring could be extended to a

range of lakes and ponds, potentially revealing ecological conditions

of those environments.

Our acoustic monitoring could highlight a peculiar spatial organi-

sation of the population with a negative relationship between acous-

tic activity and vegetation. The green alga species, Chara globularis,

which dominated the vegetation in the pond, could affect by its

presence sound propagation such that it could partly affect the

intensity of the chorus recorded by the hydrophones. Nevertheless,

the marked difference between location with and without vegetation

is most likely explained by microhabitat preference of M. scholtzi and

its affinity for free sediment and open water microhabitats (Jansson,

1977b; CD and JS personal observations). It is interesting that free

sediments are associated with favourable conditions of sound propa-

gation with less sound distortion due to obstacles. Such microhabi-

tats may then be chosen also for acoustic properties of the

environment allowing an efficient signal transmission, as stipulated

by the acoustic habitat hypothesis (Mullet, Farina, & Gage, 2017).

The acoustic activity of M. scholtzi population showed an unex-

pected negative relationship with ambient temperature. Most animal

species display a bell‐shaped activity response curve to ambient tem-

perature so that an increase in acoustic activity is expected to occur

when the temperature rises towards an optimum (Begon, Townsend,

John, Colin, & John, 2006). Such an increase has been repeatedly

observed in calling rate, carrier frequency and/or amplitude for several

ectothermic insects (Sanborn, 2005), including Micronecta species

(King, 1999b). On the contrary, a decrease in acoustic activity is

expected in the right part of the bell‐shaped curve where the tempera-

ture is too high for an optimal activity. Here, the temperature in the

pond had a mean of 29°C and a maximum of 35.1°C, values that were

probably relatively high for M. scholtzi, a species with a European dis-

tribution extending from Denmark to North Africa (Jansson & Seura,

1986). Temperature was naturally correlated with time of the day so

that additional experiments in controlled conditions could be run to

disentangle the temperature and luminosity effects.

The acoustic activity of the population of M. scholtzi varied with

experimental phase, suggesting that the engine noise used for the

three‐week playback experiment did not inhibit but increase the

acoustic activity in this pond. This increase in activity was very unex-

pected, as preliminary monitoring observations revealed that the

acoustic activity of the same population in the absence of an engine

noise peaked around the 25th of June and then decreased drastically

(CD personal observations in 2013) and insects have been shown to

decrease their calling behaviour when subjected to traffic noise (Cost-

ello & Symes, 2014). Here, the anthropogenic noise had an immediate

stimulating effect on the population. In cicadas, a group of terrestrial

insects that belong to the same order as waterbugs, the chorusing

behaviour of male of Tibicina haematodes can be elicited by a noise in

the frequency band of the male calling song (Sueur & Aubin, 2002).

Here, a roughly similar phenomenon might occur as the noise of the

engine and the stridulation of M. scholtzi share the same frequency

band. Only playback experiments conducted at the individual level and

with playbacks of different sounds (different noises and conspecific

calls) could confirm this hypothesis. In any case, the increase in acous-

tic activity linked to the onset of anthropogenic activity could consti-

tute a bias for population survey by increasing the estimated densities.

In addition to a change in the level of acoustic activity of the popu-

lation, the engine noise also modified the time pattern of acoustic

activity. The noise during the treatment phase induced a significant

positive delay in the timing of the acoustic activity independently from

TABLE 3 Time shift between pairs of experimental phases for the sunrise, sunset, temperature and acoustic activity. Positive values
correspond to delays of the second time series compared to the first (for instance, the sun rises two minutes later on average in the treatment
phase than the pretreatment phase). For sunrise and sunset, the mean, minimum and maximum values are reported. For the temperature and
log10(A7-12), the mean values and 95% lower and upper confidence intervals (CI) are reported (p‐value *<0.05, **<0.01, ***<0.001)

Comparison
Sunrise time shift
(min‐max, in minutes)

Sunset time shift
(min‐max, in minutes)

Temperature time shift
(lower, upper CI, in minutes)

log10(A7-12) time shift
(lower, upper CI, in minutes)

Pretreatment vs. treatment 2 (0, 3) 1.1 (0, 2) 0.1 (0, 0.2) 10.6 (6.1, 16.0)**

Treatment vs. post-treatment 3.4 (0, 7) − 0.6 (−1, 0) 0.1 (0, 0.2) 2.7 (‐ 0.7, 6.9)

Pretreatment vs.
post-treatment

5.4 (3, 8) 0.6 (0, 2) 0.4 (0, 1.0) 13.9 (8.2, 20.9)***
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the effects of a change in the sunrise time. The engine noise stimu-

lated the individual acoustic behaviour resulting in the population

being more active and for longer periods. The effects of noise during

the treatment phase carried on during the post-treatment phase: Nei-

ther the level nor the timing of the acoustic activity recovered the ini-

tial values of the pretreatment phase during the post-treatment phase.

As M. scholtzi was the most important element of the underwater

soundscape, such prolonged effects of noise may affect not only the

population of M. scholtzi but also the complete ecosystem and have

consequences on other organisms using sound for communication or

orientation following a cascading effect as already revealed in terres-

trial and marine communities and ecosystems (Francis et al., 2012;

Simpson et al., 2016; Solan et al., 2016). To confirm those potential

higher level effects, this experiment would need to be replicated in

several ponds and looking at the effect on other species activity.

Ecoacoustics, through a 3‐week acoustic monitoring, proved to

be a relevant approach to reveal spatio-temporal dynamics of activ-

ity in an aquatic insect. Even if, there is still a need for more studies

exploring the exact link between acoustic activity and population

density, a rigorous and relatively simple protocol was sufficient to

identify the spatial and temporal patterns of M. scholtzi acoustic

activity and to identify effects of noise, temperature and vegetation

on this acoustic activity. Such a method could be deployed over sev-

eral ponds in a monitoring programme designed at a landscape scale,

using new open‐source, customisable and inexpensive audio record-

ing devices (Whytock & Christie, 2017). Given the current need to

monitor effects of global changes, a similar approach could be

deployed for other populations such as other aquatic insects,

amphibians or fish.

ACKNOWLEDGEMENT

We would like to thank the Fondation d'entreprise du golf de Vidau-

ban, in particular, Catherine Fournil for providing access to the study

site and Pierre‐Alexis Rault (Service du Patrimoine Naturel) for his

expertise on local fauna and flora. We thank Jean‐Luc Pessel for his

help during the field work. We are grateful to Bruno Naylor for review-

ing the quality of English writing. Our study would not have been pos-

sible without equipment kindly lent by Line Legall and Laurent

Albenga. This work was supported by a grant LabEx ANR‐10‐LABX‐
0003‐BCDiv related to the program ANR‐11‐IDEX‐0004‐02. We

acknowledge the work of two anonymous reviewers for their helpful

comments on the manuscript. At last, we thank Romain Garrouste and

Laurent Lellouch for their help at the early start of the project.

CONFLICT OF INTEREST

The authors have no conflict of interest to declare.

ORCID

Camille Desjonquères http://orcid.org/0000-0002-6150-3264

REFERENCES

Andrew, R. K., Howe, B. M., & Mercer, J. A. (2011). Long‐time trends in
ship traffic noise for four sites off the North American West Coast.
Journal of the Acoustical Society of America, 129, 642–651. https://
doi.org/10.1121/1.3518770

Barber, J. R., Burdett, C. L., Reed, S. E., Warner, K. A., Formichella, C.,
Crooks, K. R., … Fristrup, K. M. (2011). Anthropogenic noise expo-
sure in protected natural areas: estimating the scale of ecological
consequences. Landscape Ecology, 26, 1281–1295. https://doi.org/10.
1007/s10980-011-9646-7

Bardeli, R., Wolff, D., Kurth, F., Koch, M., Tauchert, K.-H., & Frommolt,
K.-H. (2010). Detecting bird sounds in a complex acoustic environ-
ment and application to bioacoustic monitoring. Pattern Recognition
Letters, 31, 1524–1534. https://doi.org/10.1016/j.patrec.2009.09.014

Begon, M., Townsend, C. R. H., John, L., Colin, R. T., & John, L. H. (2006).
Ecology: from individuals to ecosystems. New Jersey: Wiley-Blackwell.

Blumstein, D. T., Mennill, D. J., Clemins, P., Girod, L., Yao, K., Patricelli,
G., … Kirschel, A. N. G. (2011). Acoustic monitoring in terrestrial
environments using microphone arrays: applications, technological
considerations and prospectus: acoustic monitoring. Journal of Applied
Ecology, 48, 758–767. https://doi.org/10.1111/j.1365-2664.2011.
01993.x

Bolgan, M., Chorazyczewska, E., Winfield, I.J., Codarin, A., O'Brien, J., &
Gammell, M. (2016). First observations of anthropogenic underwater
noise in a large multi‐use lake. Journal of Limnology, 75(3), 644–651.

Brandes, T. S., Naskrecki, P., & Figueroa, H. K. (2006). Using image process-
ing to detect and classify narrow‐band cricket and frog calls. Journal of
the Acoustical Society of America, 120, 2950–2957. https://doi.org/10.
1121/1.2355479

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classifica-
tion and regression trees. Belmont, CA: CRC Press.

Brumm, H. (2004). The impact of environmental noise on song amplitude
in a territorial bird. Journal of Animal Ecology, 73, 434–440. https://
doi.org/10.1111/j.0021-8790.2004.00814.x

Costello, R. A., & Symes, L. B. (2014). Effects of anthropogenic noise on
male signalling behaviour and female phonotaxis in Oecanthus tree
crickets. Animal Behavior, 95, 15–22. https://doi.org/10.1016/j.anbeha
v.2014.05.009

Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler,
D. J., Lévêque, C., … Sullivan, C. A. (2006). Freshwater biodiversity:
importance, threats, status and conservation challenges. Biological
Reviews, 81, 163–182. https://doi.org/10.1017/S1464793105006950

Fletcher, N. H. (2007). Animal bioacoustics. In T. Rossing (Ed.). Springer
handbook of acoustics (pp. 785–804). New York, NY: Springer.
https://doi.org/10.1007/978-0-387-30425-0

Francis, C. D., Kleist, N. J., Ortega, C. P., & Cruz, A. (2012). Noise pollu-
tion alters ecological services: enhanced pollination and disrupted
seed dispersal. Proceedings of the Royal Society B: Biological Sciences,
279, 2727–2735. https://doi.org/10.1098/rspb.2012.0230

Furnas, B. J., & Callas, R. L. (2015). Using automated recorders and occu-
pancy models to monitor common forest birds across a large geographic
region: Automated Recorders Monitoring Common Birds. Journal of
Wildlife Management, 79, 325–337. https://doi.org/10.1002/jwmg.821

Ganchev, T., Potamitis, I., & Fakotakis, N. (2007). Acoustic monitoring of
singing insects. In: Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference On. IEEE, pp. IV–721.

Gerhardt, H. C., & Huber, F. (2002). Acoustic communication in insects and
anurans: common problems and diverse solutions. Chicago: University
of Chicago Press.

Groom, M. J. (2006). Threats to biodiversity. Principles of Conservation
Biology, 63, 109.

Hildebrand, J. (2009). Anthropogenic and natural sources of ambient
noise in the ocean. Marine Ecology Progress Series, 395, 5–20.
https://doi.org/10.3354/meps08353

DESJONQUÈRES ET AL. | 9

http://orcid.org/0000-0002-6150-3264
http://orcid.org/0000-0002-6150-3264
http://orcid.org/0000-0002-6150-3264
https://doi.org/10.1121/1.3518770
https://doi.org/10.1121/1.3518770
https://doi.org/10.1007/s10980-011-9646-7
https://doi.org/10.1007/s10980-011-9646-7
https://doi.org/10.1016/j.patrec.2009.09.014
https://doi.org/10.1111/j.1365-2664.2011.01993.x
https://doi.org/10.1111/j.1365-2664.2011.01993.x
https://doi.org/10.1121/1.2355479
https://doi.org/10.1121/1.2355479
https://doi.org/10.1111/j.0021-8790.2004.00814.x
https://doi.org/10.1111/j.0021-8790.2004.00814.x
https://doi.org/10.1016/j.anbehav.2014.05.009
https://doi.org/10.1016/j.anbehav.2014.05.009
https://doi.org/10.1017/S1464793105006950
https://doi.org/10.1007/978-0-387-30425-0
https://doi.org/10.1098/rspb.2012.0230
https://doi.org/10.1002/jwmg.821
https://doi.org/10.3354/meps08353


Hutto, R. L., & Stutzman, R. J. (2009). Humans versus autonomous record-
ing units: a comparison of point‐count results. Journal of Field Ornithol-
ogy, 80, 387–398. https://doi.org/10.1111/j.1557-9263.2009.00245.x

Jansson, A. (1977a). Micronectae (Heteroptera, Corixidae) as indicators of
water quality in two lakes in southern Finland. Annales Zoologici
Fennici, 14, 118–124.

Jansson, A. (1977b). Distribution of Micronectae (Heteroptera, Corixidae)
in Lake Päijänne, central Finland: correlation with eutrophication and
pollution. Annales Zoologici Fennici, 14, 105–117.

Jansson, A., & Seura, S. H. (1986). The Corixidae (Heteroptera) of Europe
and some adjacent regions. Entomologica Fennica, 47, 1–94.

Jeliazkov, A., Bas, Y., Kerbiriou, C., Julien, J.-F., Penone, C., & Le Viol, I.
(2016). Large‐scale semi‐automated acoustic monitoring allows to
detect temporal decline of bush‐crickets. Global Ecology and Conserva-
tion, 6, 208–218. https://doi.org/10.1016/j.gecco.2016.02.008

King, I. M. (1999a). Acoustic communication and mating behaviour in
water bugs of the genus Micronecta. Bioacoustics, 10, 115–130.
https://doi.org/10.1080/09524622.1999.9753425

King, I. M. (1999b). Species‐specific sounds in water bugs of the genus
Micronecta. Part 1. Sound analysis. Bioacoustics, 9, 297–323.
https://doi.org/10.1080/09524622.1999.9753406

Krause, B., & Farina, A. (2016). Using ecoacoustic methods to survey the
impacts of climate change on biodiversity. Biological Conservation,
195, 245–254. https://doi.org/10.1016/j.biocon.2016.01.013

Laiolo, P. (2010). The emerging significance of bioacoustics in animal
species conservation. Biological Conservation, 143, 1635–1645.
https://doi.org/10.1016/j.biocon.2010.03.025

Le Galliard, J.-F., Guarini, J.-M., & Gaill, F. (2012). Sensors for ecology:
towards integrated knowledge of ecosystems. Paris: CNRS-Institut
Écologie et Environnement.

McGregor, P. K., Horn, A. G., Leonard, M. L., & Thomsen, F. (2013).
Anthropogenic Noise and Conservation. In H. Brumm (Ed.), Animal
communication and noise (pp. 409–444). Berlin Heidelberg, Berlin,
Heidelberg: Springer. https://doi.org/10.1007/978-3-642-41494-7

Mullet, T. C., Farina, A., & Gage, S. H. (2017). The acoustic habitat
hypothesis: an ecoacoustics perspective on species habitat selection.
Biosemiotics, 1–18, https://doi.org/10.1007/s12304-017-9288-5

Orci, K. M., Petróczki, K., & Barta, Z. (2016). Instantaneous song modifi-
cation in response to fluctuating traffic noise in the tree cricket
Oecanthus pellucens. Animal Behavior, 112, 187–194. https://doi.org/
10.1016/j.anbehav.2015.12.008

Pieretti, N., & Farina, A. (2013). Application of a recently introduced index
for acoustic complexity to an avian soundscape with traffic noise. Jour-
nal of the Acoustical Society of America, 134, 891–900. https://doi.org/
10.1121/1.4807812

Pijanowski, B. C., Farina, A., Gage, S. H., Dumyahn, S. L., & Krause, B. L.
(2011). What is soundscape ecology? An introduction and overview
of an emerging new science. Landscape Ecology, 26, 1213–1232.
https://doi.org/10.1007/s10980-011-9600-8

Popper, A. N., & Hastings, M. C. (2009). The effects of anthropogenic
sources of sound on fishes. Journal of Fish Biology, 75, 455–489.
https://doi.org/10.1111/j.1095-8649.2009.02319.x

Popper, A. N., Smith, M. E., Cott, P. A., Hanna, B. W., MacGillivray, A. O.,
Austin, M. E., & Mann, D. A. (2005). Effects of exposure to seismic
airgun use on hearing of three fish species. Journal of the Acoustical
Society of America, 117, 3958. https://doi.org/10.1121/1.1904386

R Core Team (2015). R: a language and environment for statistical comput-
ing. Vienna, Austria: R Foundation for Statistical Computing. Available
at: http://www.R-project.org/

Ramsay, J., Hooker, G., & Graves, S. (2009). Functional data analysis with
R and MATLAB. New York, NY: Springer. https://doi.org/10.1007/
978-0-387-98185-7

Ramsay, J. O., Wickham, H., Graves, S., & Hooker, G. (2014). fda: Func-
tional Data Analysis.

Reid, A., Hardie, D. J. W., Mackie, D., Jackson, J. C., & Windmill, J. F. C.
(2018). Extreme call amplitude from near‐field acoustic wave coupling
in the stridulating water insect Micronecta scholtzi (Micronectinae).
Journal of the Royal Society, Interface, 15, 20170768. https://doi.org/
10.1098/rsif.2017.0768

Risch, D., Castellote, M., Clark, C. W., Davis, G. E., Dugan, P. J., Hodge, L.
E., … Nieukirk, S. L. (2014). Seasonal migrations of North Atlantic
minke whales: novel insights from large‐scale passive acoustic moni-
toring networks. Movement Ecology, 2, 1.

Sanborn, A. (2005). Acoustic signals and temperature. In S. Drosopoulos
& M. F. Claridge (Eds.), Insect sounds and communication, contempo-
rary topics in entomology (pp. 111–125). Boca Raton: Taylor & Francis.
https://doi.org/10.1201/CRCCONTOPENT

Simpson, S. D., Radford, A. N., Nedelec, S. L., Ferrari, M. C. O., Chivers,
D. P., McCormick, M. I., & Meekan, M. G. (2016). Anthropogenic
noise increases fish mortality by predation. Nature Communications, 7,
10544. https://doi.org/10.1038/ncomms10544

Solan, M., Hauton, C., Godbold, J. A., Wood, C. L., Leighton, T. G., & White,
P. (2016). Anthropogenic sources of underwater sound can modify
how sediment‐dwelling invertebrates mediate ecosystem properties.
Scientific Reports, 6, 20540. https://doi.org/10.1038/srep20540

Stanley, C. Q., Walter, M. H., Venkatraman, M. X., & Wilkinson, G. S. (2016).
Insect noise avoidance in the dawn chorus of Neotropical birds. Animal
Behavior, 112, 255–265. https://doi.org/10.1016/j.anbehav.2015.12.003

Sueur, J., & Aubin, T. (2002). Acoustic communication in the Palaearctic
red cicada, Tibicina haematodes : chorus organisation, calling‐song
structure, and signal recognition. Canadian Journal of Zoology, 80,
126–136. https://doi.org/10.1139/z01-212

Sueur, J., Aubin, T., & Simonis, C. (2008). Seewave: a free modular tool
for sound analysis and synthesis. Bioacoustics, 18, 213–226. https://
doi.org/10.1080/09524622.2008.9753600

Sueur, J., & Farina, A. (2015). Ecoacoustics: the ecological investigation
and interpretation of environmental sound. Biosemiotics, 8, 493–502.
https://doi.org/10.1007/s12304-015-9248-x

Sueur, J., Mackie, D., & Windmill, J. F. C. (2011). So small, so loud: extre-
mely high sound pressure level from a pygmy aquatic insect (Corixi-
dae, Micronectinae). PLoS ONE, 6, e21089. https://doi.org/10.1371/
journal.pone.0021089

Therneau, T. M., Atkinson, B., & Ripley, M. B. (2010). The rpart package.
Tyack, P. L., & Janik, V. M. (2013). Effects of noise on acoustic signal

production in marine mammals. In H. Brumm (Ed.), Animal communi-
cation and noise (pp. 251–271). Berlin Heidelberg, Berlin, Heidelberg:
Springer. https://doi.org/10.1007/978-3-642-41494-7

Whytock, R. C., & Christie, J. (2017). Solo: an open source, customizable and
inexpensive audio recorder for bioacoustic research.Methods in Ecology
& Evolution, 8, 308–312. https://doi.org/10.1111/2041-210X.12678

Zimmer, W. M. X. (2011). Passive acoustic monitoring of Cetaceans.
Cambridge, New York: Cambridge University Press. https://doi.org/
10.1017/CBO9780511977107

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Desjonquères C, Rybak F, Ulloa JS,

Kempf A, Hen AB, Sueur J. Monitoring the acoustic activity

of an aquatic insect population in relation to temperature,

vegetation and noise. Freshwater Biol. 2018;00:1–10.
https://doi.org/10.1111/fwb.13171

10 | DESJONQUÈRES ET AL.

https://doi.org/10.1111/j.1557-9263.2009.00245.x
https://doi.org/10.1016/j.gecco.2016.02.008
https://doi.org/10.1080/09524622.1999.9753425
https://doi.org/10.1080/09524622.1999.9753406
https://doi.org/10.1016/j.biocon.2016.01.013
https://doi.org/10.1016/j.biocon.2010.03.025
https://doi.org/10.1007/978-3-642-41494-7
https://doi.org/10.1007/s12304-017-9288-5
https://doi.org/10.1016/j.anbehav.2015.12.008
https://doi.org/10.1016/j.anbehav.2015.12.008
https://doi.org/10.1121/1.4807812
https://doi.org/10.1121/1.4807812
https://doi.org/10.1007/s10980-011-9600-8
https://doi.org/10.1111/j.1095-8649.2009.02319.x
https://doi.org/10.1121/1.1904386
http://www.R-project.org/
https://doi.org/10.1007/978-0-387-98185-7
https://doi.org/10.1007/978-0-387-98185-7
https://doi.org/10.1098/rsif.2017.0768
https://doi.org/10.1098/rsif.2017.0768
https://doi.org/10.1201/CRCCONTOPENT
https://doi.org/10.1038/ncomms10544
https://doi.org/10.1038/srep20540
https://doi.org/10.1016/j.anbehav.2015.12.003
https://doi.org/10.1139/z01-212
https://doi.org/10.1080/09524622.2008.9753600
https://doi.org/10.1080/09524622.2008.9753600
https://doi.org/10.1007/s12304-015-9248-x
https://doi.org/10.1371/journal.pone.0021089
https://doi.org/10.1371/journal.pone.0021089
https://doi.org/10.1007/978-3-642-41494-7
https://doi.org/10.1111/2041-210X.12678
https://doi.org/10.1017/CBO9780511977107
https://doi.org/10.1017/CBO9780511977107
https://doi.org/10.1111/fwb.13171

