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Abstract
1. The rise of passive acoustic monitoring and the rapid growth in large audio data-

sets is driving the development of analysis methods that allow ecological infer-
ences to be drawn from acoustic data.

2. Acoustic indices are currently one of the most widely applied tools in ecoacous-
tics. These numerical summaries of the sound energy contained in digital audio 
recordings are relatively straightforward and fast to calculate but can be chal-
lenging to interpret. Misapplication and misinterpretation have produced con-
flicting results and led some to question their value.

3. To encourage better use of acoustic indices, we provide nine points of guid-
ance to support good study design, analysis and interpretation. We offer practi-
cal recommendations for the use of acoustic indices in the study of both whole 
soundscapes and individual taxa and species, and point to emerging trends in 
ecoacoustic analysis. In particular, we highlight the critical importance of under-
standing the links between soundscape patterns and acoustic indices.

4. Acoustic indices can offer insights into the state of organisms, populations, and 
ecosystems, complementing other ecological research techniques. Judicious se-
lection, appropriate application and thorough interpretation of existing indices is 
vital to bolster robust developments in ecoacoustics for biodiversity monitoring, 
conservation and future research.
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1  |  INTRODUC TION TO SOUNDSC APES & 
ACOUSTIC INDICES

Ecoacoustics is a growing ecological discipline that investigates the 
ecological role of sound across levels from individual organisms to 
communities and landscapes (Sueur & Farina, 2015). Recent tech-
nological advances have increased the availability of low- cost, ro-
bust, passive acoustic recorders (e.g. Hill et al., 2018), facilitating 
the collection of vast audio data sets (Roe et al., 2021). While audio 
recordings can be readily collected, the analysis methods needed to 
garner robust ecological insights from acoustic data are still in de-
velopment (Deichmann et al., 2018; Scarpelli et al., 2021; Vella et al., 
2022; Wimmer et al., 2013).

Large acoustic datasets necessitate automated processing and 
analysis. One approach to ecoacoustic analysis considers the acous-
tic environment— the soundscape— as a whole (Sueur & Farina, 
2015), with soundscape components commonly categorised ac-
cording to their source: anthropophony, biophony or geophony 
(Pijanowski et al., 2011) (bold terms defined in Table 1). There are 
circumstances where a target- signal approach of detecting and iden-
tifying individual sounds is the best approach. However, there are 
numerous situations when it may be necessary or preferable to con-
sider broader soundscape patterns rather than identifying individual 

target signals. These include: (i) when species identification is diffi-
cult because vocalisations occur in dense, multi- species choruses; 
(ii) when studying systems where sound sources are unknown; or 
(iii) where questions extend beyond the species- level, focussing on 
issues such as community integrity, ecosystem functioning, habitat 
quality or the prioritisation of ecological complexity over species in 
restoration ecology (Bullock et al., 2022).

Soundscape analyses commonly use acoustic indices; numerical 
descriptors of the patterns and distribution of acoustic energy in an 
audio recording. Acoustic indices range from simple summaries such 
as the mean amplitude of a recording, to more complex calculations 
reflecting spectral and/or temporal changes within a soundscape 
(see Table S1 for an overview of widely used indices). No single index 
can provide a comprehensive description of the original recording 
and dozens of acoustic indices have been proposed reflecting differ-
ent aspects of the soundscape (Buxton et al., 2018).

Acoustic indices characterise the soundscape or facets of the 
acoustic community and have successfully provided ecological 
insights without requiring species- specific identifications. For ex-
ample, using acoustic indices it is possible to discriminate among 
habitat types (Bradfer- Lawrence et al., 2019; Do Nascimento et al., 
2020; Eldridge et al., 2018; Metcalf et al., 2021), monitor the im-
pacts of habitat disturbance (Burivalova et al., 2021, 2022; Duarte, 

TA B L E  1  A glossary of key terms used in ecoacoustics.

Acoustic community An aggregation of soniferous species at a specific location and time (Farina & James, 2016)

Acoustic Adaptation 
Hypothesis 
(AAH)

The assumption that animals' soniferous signals have evolved to take account of sound propagation in their preferred 
habitats and that animals emit signals that optimise propagation (Marten & Marler, 1977; Morton, 1975). Support for 
this hypothesis is mixed (Boncoraglio & Saino, 2007)

Acoustic Niche 
Hypothesis 
(ANH)

The assumption that as acoustic space is a limited resource, animals will spatiotemporally partition their calls to avoid 
interference from other sounds (Krause, 1993). There is mixed support for this hypothesis (e.g. Gomes et al., 2021; 
Hart et al., 2021; Tobias et al., 2014)

Acoustic index Numerical summary of the patterns and distribution of acoustic energy in digital soundscape recordings. Summaries can 
reflect temporal features, frequency features, or both. Sometimes called ‘soundscape metrics’, ‘features’, ‘descriptors’ 
or ‘representations’ (Sueur et al., 2014)

Anthropophony/
Technophony

Sound of an anthropogenic origin. Anthropophony is the older term and includes both engine noise and human speech 
(Pijanowski et al., 2011). Some have proposed that the latter ought to be included in biophony and so technophony has 
sometimes been used for anthropogenic sounds of mechanical origin

Biophony Sound of a biological origin such as insect stridulations or bird song, but generally excluding human vocalisations 
(Pijanowski et al., 2011)

False- colour 
spectrogram 
(FCS)

Similar to a spectrogram (see below), but instead of a colour gradient representing amplitude, three acoustic indices 
are mapped to red, green and blue channels. As index values can be calculated for large datasets, FCS enables rapid 
visualisation of soundscapes across a range of temporal scales (Towsey, Wimmer, et al., 2014)

Geophony Sound from natural processes such as running water, rainfall or wind as it interacts with vegetation or other landscape 
features (Pijanowski et al., 2011)

Sound truth Listening to recordings to ascertain the different soundscape features therein (Holgate et al., 2021). This has also been 
described as ‘aural survey’ or ‘aural inventory’ of recordings. Sound truth is distinct from ground truthing, where 
researchers visit recording sites to identify soundscape features through in situ aural surveys for example

Soundscape The acoustic environment of a landscape, composed of biophony, geophony and anthropophony, which create patterns 
of sound varying over spatial and temporal scales (Pijanowski et al., 2011). This has also been termed the ‘objective 
soundscape’ and is the focus of the current paper. This contrasts with the ‘subjective soundscape’, which refers to the 
acoustic environment as perceived by individual organisms within it, see Farina et al. (2021) and Grinfeder et al. (2022)

Spectrogram A visual representation of the matrix derived by converting a raw audio recording using a Fast Fourier Transform, with 
time on the x- axis, frequency on the y- axis and amplitude values in each cell reflected with a colour or intensity 
gradient (Sueur, 2018)
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Sousa- Lima, et al., 2021; Gasc et al., 2018; Gottesman et al., 2021; 
Rappaport et al., 2022), track habitat recovery following restoration 
(Borker et al., 2020; Lamont et al., 2022; Müller et al., 2022) and as-
sess the suitability of that habitat for particular species in the future 
(Znidersic & Watson, 2022).

While there is abundant guidance on acoustic monitoring 
(Browning et al., 2017; Metcalf et al., 2023; Sugai et al., 2020) and 
methodological developments related to acoustic indices (Abrahams 
et al., 2021; Bradfer- Lawrence et al., 2019; Harris et al., 2016; 
Metcalf et al., 2021; Villanueva- Rivera et al., 2011), there remain 
fundamental questions regarding the appropriate use of acoustic 
indices. Ecoacoustics is a young field and will develop substantially. 
However, robust scientific advances will only be achieved if research 
using current acoustic indices is based on solid understanding of 
basic acoustics, digital signal processing, strong methodological de-
sign and clear, critical interpretation of results.

Here, we provide nine points of guidance across three phases 
of the research cycle to support best practice in using acoustic indi-
ces (Figure 1). We outline potential pitfalls in study design, analysis 
and interpretation, and provide recommendations on how best to 
practically address these when planning passive acoustic monitoring 

studies. These points have emerged from our own experiences 
carrying out soundscape research over the last decade and were 
consolidated through discussion with researchers and practitioners 
from the international ecoacoustic community at two workshops in 
2022.

2  |  IDENTIF YING YOUR PAR ADIGM

It is important to consider the purpose of using acoustic indices, as 
this will determine both the methodology and how effective they 
are likely to be in answering a given ecological question. To date, ap-
plications of acoustic indices can be divided into two main analytical 
frameworks: (i) those describing soundscape patterns and dynamics, 
and (ii) those using indices as proxies for biodiversity metrics such as 
species richness or functional diversity (Alcocer et al., 2022). These 
approaches require different analyses and interpretation, but the 
academic literature rarely draws a clear distinction between the two 
paradigms.

Acoustic indices can be excellent soundscape descriptors. 
Acoustic indices compress highly complex acoustic data into a 

F I G U R E  1  This Perspective provides 
guidance for decision making on nine key 
points at three principal stages of the 
ecoacoustic research process.
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single value or vector of values, providing concise descriptions of 
soundscape patterns and thus facilitating comparisons within and 
among recordings. Indices can reflect biotic vocalisations, habitats 
and landscape features such as rivers and non- biological sounds like 
weather events. Analyses in this paradigm are particularly useful 
for:

 (i) Supporting data- cleaning workflows by quickly identifying re-
cordings for exclusion prior to other analyses, perhaps because 
of microphone degradation (Phillips et al., 2018), distortion 
(Eldridge et al., 2018) or excessive geophony (Metcalf et al., 
2020; Sánchez- Giraldo et al., 2021). See Section 6.

 (ii) Rapidly visualising large data sets to facilitate qualitative in-
terpretation. For example, false- colour spectrograms can 
condense years of data into a single plot, which permits identi-
fication of dominant soundscape patterns and seasonal changes 
(Brodie et al., 2022; Phillips et al., 2018; Towsey et al., 2018; 
Towsey, Zhang, et al., 2014).

 (iii) Detecting strong temporal and spatial trends, aiding identifica-
tion of large- scale soundscape patterns and areas of acoustic 
interest (e.g. Phillips et al., 2018; Ross et al., 2018; Scarpelli  
et al., 2021). This applies across ecological domains— dawn or 
dusk choruses are readily detectable in habitats as diverse as 
temperate grassland, tropical rainforest and coral reefs (Barbaro 
et al., 2022; Burivalova et al., 2021; Lamont et al., 2022).

Acoustic indices can be used as biodiversity proxies. Much of the 
early ecoacoustic literature investigated the potential for acoustic 
indices to act as direct proxies for some facet of biodiversity, partic-
ularly species richness (Sueur et al., 2008). This approach leans heav-
ily on the Acoustic Adaptation Hypothesis and the Acoustic Niche 
Hypothesis. The latter posits that taxa evolve to fill available tempo-
ral and frequency niches to improve communication; many indices 
were designed to characterise acoustic diversity on the assumption 
that acoustic diversity predicts biodiversity.

Wider testing has demonstrated that associating acoustic in-
dices with biodiversity metrics, such as species richness, diversity 
or abundance, is not straightforward. There has been some suc-
cess in linking acoustic indices to the presence of individual spe-
cies (Brodie et al., 2022; Papin et al., 2019; Towsey et al., 2018; 
Znidersic et al., 2020), or to broader taxon richness (Allen- Ankins 
et al., 2023; Bradfer- Lawrence et al., 2020; Dröge et al., 2021; Roca 
& Van Opzeeland, 2020). However, there are contradictory patterns 
reported in the literature. There do not appear to be any acoustic 
indices that hold a consistent relationship with species richness or 
density across regions or taxonomic communities, limiting their po-
tential as biodiversity proxies (Alcocer et al., 2022; Sethi et al., 2023). 
Some contradictory findings may arise from issues in research design 
(see considerations below), but other inconsistencies reflect sound-
scape differences among species, acoustic communities, biomes and 
ecosystems (Barbaro et al., 2022; Buxton et al., 2018; Eldridge et al., 
2018).

There are at least four reasons to be cautious when using acous-
tic indices as a direct proxy for aspects of biodiversity such as spe-
cies richness:

 (i) Biodiversity metrics are themselves already simplified indices of 
a complex ecological environment.

 (ii) Acoustic index values derived from a shifting soundscape 
will not consistently reflect a static biodiversity metric. There 
is substantial rapid variation as individual animals move rel-
ative to the recorders, and this intersects with differences in 
microhabitat- driven sound attenuation (Alcocer et al., 2022; 
Bradfer- Lawrence et al., 2020; Darras et al., 2016; Lellouch et 
al., 2014). Therefore, acoustic index values can change over 
short timescales, while species richness, for example, remains 
the same.

 (iii) Relationships between biodiversity metrics and acoustic indices 
are not linear. Doubling the number of vocalising species or in-
dividuals in a recording will not double the value of an acoustic 
index.

 (iv) Not all species are represented equally in the soundscape— 
species with loud, varied or frequent vocalisations will have 
greater prominence, disproportionately impacting some acous-
tic indices. For example, Eurasian Skylark Alauda arvensis is an 
excellent mimic with varied song and could generate higher 
acoustic diversity than an entire species- rich woodland bird 
assemblage.

2.1  |  Recommendation: Decide which paradigm the 
acoustic indices study falls into

This is critical as it will impact on all eight of the key points discussed 
below. Soundscape analyses using acoustic indices as descriptors 
are likely to be simpler to undertake and make fewer assumptions 
than studies using acoustic indices as proxies for biodiversity. If 
using acoustic indices as a proxy for biodiversity, it is imperative to 
undertake calibration and validation for the region and taxonomic 
group (see Section 8). Although current acoustic indices do not con-
sistently predict simple biodiversity metrics, it does not undermine 
the approach in principle. Rather it reinforces the need for system-
atic research and careful inference to generate insight and guide the 
design and application of next generation of soundscape descriptors 
for ecological research and monitoring.

3  |  GAINING FAMILIARIT Y WITH THE 
STUDY SYSTEM

It is important to utilise existing ecological knowledge of the study 
system to formulate hypotheses and design meaningful studies. 
Researchers would not undertake a bird survey without familiarity 
with the avian community of a region. Similarly, effective soundscape 
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analysis relies on familiarity with acoustic patterns in the study system. 
This is not to imply that researchers need to know every species or vo-
calisation in a system, but rather to understand broad acoustic trends, 
such as when anuran choruses occur or the influence of a rainstorm 
on the soundscape. Nor does this negate the enormous potential for 
exploratory ecoacoustic research in understudied ecosystems where 
soundscape knowledge is currently limited, such as in soil or fresh-
water aquatic environments. However, the complexity and breadth of 
studies in lesser- known environments will likely be restricted to rela-
tively simple descriptive studies until the knowledge base has grown.

3.1  |  Recommendation: Listen to the study system

Researchers should undertake pilot recordings when designing their 
study. By design and necessity, indices discard a vast amount of in-
formation; familiarity with the study soundscapes provides essential 
foundations for designing data collection and interpreting analyses 
(see Section 10).

3.2  |  Recommendation: Consider how sound 
travels in the study environment

Most acoustic indices were developed for audible frequencies in ter-
restrial systems (Alcocer et al., 2022), and may not reflect patterns in 
aquatic soundscapes for example, as sound transmission is so differ-
ent in water (Duarte, Chapuis, et al., 2021). Applications of acoustic 
indices to aquatic or subterranean systems (Abrahams et al., 2021; 
Linke et al., 2018) and to frequencies beyond the audible spectrum (de 
Aguiar Silva et al., 2022) are to be welcomed as exciting developments 
in the discipline, but researchers should not expect indices patterns 
to match those from audible, terrestrial soundscapes (see Section 7).

4  |  COLLEC TING HIGH QUALIT Y 
RECORDINGS

Collecting usable data requires equipment appropriate to the study 
context, and awareness of technical features which may affect record-
ing quality. We highlight some key sources of variation below but can-
not provide a thorough treatment of these topics here. Researchers 
should consult literature offering technical guidance on these ele-
ments (e.g. Browning et al., 2017; Metcalf et al., 2023; Sueur, 2018; 
Sugai et al., 2020) and conduct trials to gain familiarity in practice.

4.1  |  Recommendation: Get to know your 
recording equipment

Some key equipment features and sources of variation that will af-
fect audio recordings, derived acoustic indices values or both are 
outlined here:

 (i) Sound anomalies generated by recorders. Some recorders, in-
cluding Swift and SoundTrap 300, generate a sound at the start 
of each recording. These sounds are unrelated to the sound-
scape but have the potential to influence acoustic indices 
values. Remove a short section from the beginning of each re-
cording prior to calculating acoustic indices. See Marcot (2022) 
for further details.

 (ii) Recorder malfunction causing a DC offset. Errors in an elec-
tronic component can cause a fixed voltage offset, meaning 
amplitude values are shifted above or below zero. This results in 
a low frequency artefact that can distort spectral indices, and a 
non- zero mean amplitude that can affect temporal indices. For 
spectral indices this can be resolved with a high pass filter that 
removes the low frequency artefacts (Bradfer- Lawrence et al., 
2019; Hyland et al., 2023).

 (iii) Recorder self- noise. This is very low frequency sound that is 
always present in recordings, generated by current running 
through the recorder's internal circuitry. This can be removed 
with a high pass filter that restricts sounds below a specified 
frequency (Bradfer- Lawrence et al., 2019; Hyland et al., 2023).

 (iv) Microphone sensitivity. Features such as signal- to- noise ratio 
and detection ranges will influence what is recorded; an ex-
tensive test can be found in Darras et al. (2020). If recorders 
can accept external microphones, investigate technical doc-
umentation to ensure equipment meets the demands of the 
study.

 (v) Microphone degradation. Long- term exposure to the elements 
can cause microphones to lose sensitivity. Check micro-
phones before and after deployment. Calibrate microphones 
if technically possible. See Metcalf et al. (2023) for further 
discussion.

5  |  COLLEC TING SUFFICIENT 
RECORDINGS

It is relatively easy to collect huge acoustic datasets and therefore 
assume that sufficient data has been collected. However, there is 
increasing awareness in other big data methodologies such as citizen 
science that smaller, targeted datasets can give more precise results 
than huge unfocussed datasets (Boyd et al., 2023; Johnston et al., 
2021). Inadequate or biased sample sizes will not provide meaningful 
ecological insights, and researchers need to consider this when col-
lecting acoustic data, just as they would for traditional biodiversity 
surveys (Buckland & Johnston, 2017).

One common practice when collecting audio recordings is the 
use of temporal subsampling, which lowers power and memory re-
quirements during deployments (thus extending recorder time in the 
field), and reduces data processing time (Sugai et al., 2020). The pat-
tern of temporal subsampling can be an important consideration. For 
studies concerned with assessing facets of biodiversity, simulation 
studies show that a greater number of smaller samples will generally 
produce a more precise estimate of an unknown value than fewer 
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larger samples (Schweiger et al., 2016). This holds true with acous-
tics; splitting up a recording period into evenly distributed, smaller 
sections will capture the focal acoustic community more compre-
hensively than a single, long sample (Metcalf et al., 2022) and re-
duce error in representation (Francomano et al., 2020). However, 
repeated temporal sampling can lead to pseudoreplication which 
must be accounted for when designing the analysis (see Section 9).

5.1  |  Recommendation: Decide if temporal 
subsampling is appropriate

This will depend on whether acoustic surveys are comparing sound-
scapes or used as biodiversity proxies (see Section 2):

 (i) Studies using deployments of many months may be able to cap-
ture broad soundscape patterns without continuous recordings 
(Francomano et al., 2020), making efficient use of limited bat-
tery life and memory capacity. If using short deployments (i.e. 
<2 weeks), then temporal subsampling will reduce survey com-
prehensiveness (Bradfer- Lawrence et al., 2019). Alternatively, 
focussing on specific periods in the diel cycle and/or narrower 
frequency limits can reduce variability among recordings, po-
tentially permitting smaller sample sizes than if comparisons 
are across entire temporal and frequency ranges (Metcalf et al., 
2021).

 (ii) If acoustic indices are being used as biodiversity proxies, then it 
is appropriate to narrow the recording window to the periods of 
the diel and annual cycles when the focal taxon is most promi-
nent in recordings (Bradfer- Lawrence et al., 2020; Metcalf et al., 
2021; Sugai et al., 2020; see Section 6).

5.2  |  Recommendation: Both daily and seasonal 
temporal subsampling protocols should be designed 
with the focal soundscape in mind

For example, if studying avian assemblages, sampling only the 
dawn chorus will likely give low detections of nocturnal species. A 
pilot study using continuous recording will help researchers to de-
sign an appropriate temporal schedule for a given focal soundscape 
(Sugai et al., 2020; see Section 3). For long- term projects, it is im-
portant to consider the impact of changing phenology, as this could 
confound inferences from very short sampling periods within the 
annual cycle.

6  |  PRE-  PROCESSING DATA CONSISTENT 
WITH YOUR QUESTION

Not all audio data will be informative or useful. More robust eco-
logical conclusions can be achieved by pre- processing, which might 
include either exclusion or treatment of recordings.

6.1  |  Recommendation: Acoustic indices can be a 
good way to identify outliers

When recordings are not representative of the soundscape they should 
be removed before analysis. Examples include noise created during de-
ployment and collection of devices, recorder malfunction (see Section 
4) or distortion due to wind, rain or interference from curious organ-
isms. After calculating a suite of acoustic indices across the entire data-
set, outlier recordings can be identified using standard multivariate 
statistical or dimensionality reduction methods (Sethi et al., 2020).

6.2  |  Recommendation: Cleaning data does not 
necessarily mean excluding recordings entirely

Where recordings include anomalies because of recorder features, 
or when signals are obscured by non- target sound, these can po-
tentially be cleaned by excluding portions of the spectrogram (see 
Section 4; Juodakis & Marsland, 2022).

What counts as signal or noise will be dependent on the study 
objectives:

 (i) When characterising soundscapes, biophony, anthropophony 
and geophony all contribute to the unique acoustic signature 
of that location (Pijanowski et al., 2011) and so can be useful to 
identify differences.

 (ii) Conversely, studies using acoustic indices as a proxy for bio-
diversity metrics should remove irrelevant geophony, anthro-
pophony and even non- target biophony. For instance, in a study 
relating index values to avian species richness, cicada chorusing 
is irrelevant noise that potentially masks valuable signals (Hart  
et al., 2015; Metcalf et al., 2021; Ross et al., 2021).

7  |  UNDERSTANDING WHAT ACOUSTIC 
INDICES REFLEC T

Understanding the link between soundscape patterns and acoustic indi-
ces requires researchers know exactly what each index aims to measure, 
the mathematics underpinning them, and their underlying assumptions. 
Formulating meaningful hypotheses necessitates a clear understanding 
of how indices will reflect soundscape patterns. For instance, if antici-
pated soundscape changes are primarily in the frequency domain, an 
index that measures amplitude variability among frequencies is a better 
choice than one that measures amplitude variability over time.

The names of acoustic indices can be misleading (Table S1). For ex-
ample, the Acoustic Complexity Index does not measure complexity in 
any formal sense (e.g. Parrott, 2010); it was originally designed to dis-
tinguish bird song from anthropophony and is the sum of the changes 
in amplitude in discrete frequency bands through time. The Acoustic 
Diversity Index is derived by calculating the Shannon entropy of the 
distribution of acoustic energy among frequency bands (Villanueva- 
Rivera et al., 2011). Higher values therefore indicate a more even 
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energy distribution among bands. Conversely, the Acoustic Evenness 
Index is calculated using the Gini coefficient on that same distribution 
(Villanueva- Rivera et al., 2011). In this case, higher values indicate that 
acoustic energy is less evenly distributed among frequency bands. 
These details are not intuitive given the index names, complicating 
interpretations for those unfamiliar with the underlying calculations.

It is critical that researchers consider the assumptions underlying 
each index, any differences between the development context and 
their own study (Table S1), and whether they can adjust index pa-
rameters to their situation. For example, the Normalised Difference 
Soundscape Index (NDSI) is designed to represent the ratio of anthro-
pophony to biophony, assuming these occur in the 1– 2 kHz and 2– 8 kHz 
range respectively (Kasten et al., 2012). However, these frequency 
ranges may not be appropriate in some contexts; biophony can often 
occur at low- frequencies, such as howler monkeys between 0.3– 1 kHz 
(Whitehead, 1995), and anthropophony at high- frequencies, including 
engines and sirens reaching 12 kHz and above (Fairbrass et al., 2017). 
These patterns can be even more extreme when applying indices in 
different realms; many marine fish choruses are concentrated between 
0.5 and 2.5 kHz (Siddagangaiah et al., 2019), so biophony patterns are 
very different to those in terrestrial recordings. Similar assumptions 
about the origins of sounds at different frequencies are made for the 
default settings for a range of other indices, including the commonly 
used Bioacoustic Index (Boelman et al., 2007; Table S1).

7.1  |  Recommendation: Develop a full 
understanding of the underlying assumptions and 
calculations of the chosen acoustic indices

Acquiring such knowledge involves reading the canonical papers in-
troducing the indices (Table S1), conducting substantial exploratory 

analysis comparing recordings, spectrograms, and indices values, 
and may also require examination of the underlying source code 
used to calculate index values.

7.2  |  Recommendation: Ensure index 
parameters are appropriate

Confirm the study ecosystem and soundscape meet the assumptions 
of the index; if the index is not meaningful or appropriate then do 
not use it (see Section 8). If the index can be tuned then use custom 
settings appropriate to the study, such as altering the spectrogram 
frequency limits (Metcalf et al., 2021). Detailed advice on parameter 
tuning is beyond the scope of this Perspective, but can be found in 
Metcalf et al. (2021, 2023).

8  |  LINKING ACOUSTIC INDICES TO 
ECOLOGIC AL PAT TERNS

The breadth of research highlighted in the Introduction shows that 
acoustic indices can accurately reflect ecological patterns. However, 
even simple analyses will be confounded if ecological change has a 
minimal impact on the soundscape, or if the index chosen is insensi-
tive to the relevant soundscape changes. There are three key as-
pects to consider when deciding whether acoustic indices are likely 
to represent the acoustic features of interest:

 (i)   Are the soundscape recordings likely to reflect the study's focus? If 
the signal is not present, or is masked in some way, then the target 
will not be reflected in acoustic indices values. Likewise, if two en-
tirely different ecological processes result in a similar spectrogram, 

F I G U R E  2  Sounds from very different ecological sources can produce similar spectral signatures and hence similar acoustic index values. 
This figure shows three 15 s spectrograms from Amazonia, with the Acoustic Complexity Index calculated between 0 and 4 kHz. (a) Anuran 
chorus 0.4– 0.8 kHz, ACI value 78.67. (b) Spix's Red- handed Howler Monkey Alouatta discolor chorus 0.3– 1.2 kHz, ACI value 78.45. (c) From 
the same location as (b) approximately 1 h later; less consistent activity in the lower frequencies leads to an increased ACI value of 86.18.
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there may be no way to differentiate between them with acoustic 
indices despite the very different ecological causes (Figure 2).

 (ii) Biota, and the emergent biophony, may not have common dynam-
ics. In some cases, a community largely reacts in unison to stimuli— 
dawn and dusk choruses being a prominent example. This strong 
univariate response is likely to be reflected by almost any acoustic 
index applied at human- audible frequency bandwidths. However, in 
many situations we cannot expect common patterns, for instance 
responses to disturbance often diverge among taxa (Burivalova  
et al., 2021, 2022; Gottesman et al., 2021) and even within taxa 
there can be idiosyncratic responses across regions (Moura et al., 
2015).

 (iii) Ecological context will inform index choice and the temporal 
and frequency scales at which to apply it. Imagine a study in-
vestigating impacts of predatory mammal control on breeding 
birds. Following management intervention there were 100 
fewer nocturnal mammal vocalisations between 0 and 1 kHz 
but a corresponding increase of 100 diurnal bird calls between 
4 and 10 kHz. Despite the underlying soundscape change, a 
simple count of acoustic events calculated across all frequency 
bands over 24 h would show no difference between the two 
soundscapes.

8.1  |  Recommendation: Develop a strong 
research plan

Researchers need a clear ecological question, a well- defined hypoth-
esis of the likely impact of the ecological subject on the soundscape, 
and then a solid a priori understanding of the subsequent relation-
ship between soundscape patterns and acoustic index values (see 
Section 7; Bradfer- Lawrence et al., 2020).

8.2  |  Recommendation: Select acoustic indices 
sensitive to the predicted soundscape changes

For example, in a study looking at community turnover, a single Acoustic 
Complexity Index value is almost meaningless but a vector of values cor-
responding to the presence or absence of sound in different regions of 
a spectrogram has been used with great effect (Burivalova et al., 2021).

8.3  |  Recommendation: Apply indices at 
appropriate temporal scales and frequency ranges

For instance, if a dawn chorus occurs between 1 and 5 kHz, those 
soundscape signals could be swamped if index scores were calcu-
lated across 0– 192 kHz (Metcalf et al., 2021). Similarly, averaging in-
dices values across long time periods of an hour or more will likely 
obscure brief soundscape patterns.

8.4  |  Recommendation: Use a suite of indices 
where appropriate

Each index only reflects one aspect of the soundscape, so research-
ers can consider several indices in combination to reflect multiple 
facets at once (Bradfer- Lawrence et al., 2019; Eldridge et al., 2018; 
Scarpelli et al., 2021; Sueur et al., 2014; Towsey, Zhang, et al., 2014). 
Interpretation of multiple indices is complex and requires simultane-
ous consideration of different soundscape patterns but can lead to 
greater ecological insight. However, researchers should not calculate 
a large suite of indices simply because it is possible to do so; index 
inclusion should be based on a priori expectations of soundscape 
patterns.

9  |  CONDUC TING APPROPRIATE 
ANALYSES

Analysis of acoustic indices should follow standard statistical best- 
practice. For example, acoustic indices have often been tested as 
proxies for biodiversity metrics using simple statistical compari-
sons such as correlation analysis and linear models (e.g. Bobryk 
et al., 2016; Jorge et al., 2018) yet most acoustic indices values are 
skewed and bounded, violating the assumptions of such approaches 
(Bolker, 2008). It is also commonplace for acoustic data to suffer 
from temporal autocorrelation and pseudoreplication (Alcocer et al., 
2022; Scarpelli et al., 2021); audio samples taken from the same 
recorder deployment at the same location at regular time intervals 
are not truly independent. Failing to account for this can result in 
poorly- fitting or over- fitted models, potentially leading to spurious 
conclusions.

9.1  |  Recommendation: Evaluate sample sizes and 
power to address ecological questions

Are the data sufficient to answer the ecological question? 
Researchers should consider whether they can create subsets of 
data or simulated datasets that will enable power analyses (Bradfer- 
Lawrence et al., 2019; Wood et al., 2021).

9.2  |  Recommendation: Acknowledge and account 
for any non- independence

Use analytical methods, such as Generalised Estimating 
Equations or Mixed models, that can account for pseudorepli-
cation arising from temporal autocorrelation among recordings 
or spatial correlation within sites. Numerous papers have used 
machine learning to identify soundscape patterns or record-
ings of interest (e.g. Do Nascimento et al., 2020; Scarpelli et al., 
2021; Towsey et al., 2018; Znidersic et al., 2020) but temporal 

 2041210x, 2023, 9, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.14194 by C
ochrane France, W

iley O
nline L

ibrary on [06/09/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2200  |   Methods in Ecology and Evolu
on BRADFER-LAWRENCE et al

or spatial non- independence can also be problematic with these 
approaches (Colegrave & Ruxton, 2018; Forstmeier et al., 2017). 
It is important to select independent data for validation sets, so 
that any overfitting due to non- independence can be identified 
(Chatfield, 1995).

9.3  |  Recommendation: Consider normalising and 
scaling data

Comparisons among indices are complicated as they are often on 
different scales. Normalising and scaling data will facilitate analyses 
and increase comparability (Bradfer- Lawrence et al., 2020; Fairbrass 
et al., 2017).

9.4  |  Recommendation: Consult with expert 
analysts and the relevant literature

We cannot provide more detailed guidance as each study is unique. 
We encourage researchers who are less experienced with analysis 
to consult with statistical or machine learning experts and specialist 
statistical texts (e.g. Bolker, 2008; Matthiopoulos, 2011).

10  |  INTERPRETING ACOUSTIC INDICES

Ultimately, researchers need to accurately interpret and clearly 
communicate what the acoustic indices reveal about soundscape 
patterns (Ross et al., 2021). As with all ecological data, exploratory 
analyses are necessary to sense- check apparent trends against the 
patterns that acoustic indices may reflect (Table S1 and the refer-
ences therein). This is particularly important when associating in-
dices with biodiversity metrics; our current understanding is that 
there is no widely generalisable relationship between acoustic 
diversity and biodiversity (Alcocer et al., 2022; Sethi et al., 2023). 
Moreover, ‘biodiversity’ includes a broad range of different metrics, 
which themselves should be carefully selected for each ecological 
question. Recommendations in Sections 2–9 above will provide the 
foundations for a considered and justifiable interpretation of the 
acoustic indices.

10.1  |  Recommendation: Interpret acoustic 
indices clearly

Explain how soundscape patterns are reflected in acoustic indices 
values. Merely describing numerical or statistical trends without 
referring to the potential underlying soundscape drivers is insuffi-
cient. While it is tempting to focus on significant results, research-
ers should ensure that these results match their knowledge of the 
soundscape, and that they are consistent with any non- significant 
patterns in other indices.

10.2  |  Recommendation: Link acoustic indices 
patterns to ground-  or sound- truthed data

A part of clear interpretation requires researchers to tie indices val-
ues to soundscape patterns and, ideally, ecological features. The 
method and quantity of recordings assessed for this task is likely to 
vary depending on study objectives— with very small datasets this 
requirement may make the use of soundscape analysis redundant 
as all recordings can be manually assessed. However, in most cases, 
the amount of manual effort required is likely to be far less than that 
needed when directly sampling ecological trends.

10.3  |  Recommendation: Clear explanations linking 
acoustic indices values and soundscape patterns are 
particularly important when describing ecoacoustic 
research to non- acousticians

Failure to meet this challenge is limiting effective comparison with 
existing research and advancement of the field. Indices are not as 
intuitive as some biodiversity metrics such as species richness. If 
we are to encourage uptake and development of acoustic indices 
in ecology and realise the potential of this approach for ecosystem 
monitoring, we need to increase accessibility to non- specialists by 
drawing clear links between indices values, soundscape patterns and 
ecological processes.

11  |  EMERGING TRENDS IN 
ECOACOUSTIC ANALYSES

Ecoacoustics is a rapidly moving field, and we present these guide-
lines in the context of ongoing developments in soundscape analy-
sis. We see emerging trends in three key areas: (i) novel applications 
of methods that characterise and quantify soundscape dynamics 
and complexity (Eldridge, 2021; Monacchi & Farina, 2019); (ii) meth-
ods to segment, cluster and classify samples borrowing from pattern 
recognition and unsupervised machine learning methods (Michaud 
et al., 2023; Ulloa et al., 2018); and (iii) new methods to generate 
numerical descriptors of audio samples using deep learning, as alter-
natives to acoustic indices.

Rather than designing acoustic indices heuristically, deep learn-
ing algorithms learn a numerical soundscape description from a 
given audio set. These can be with pre- trained models (Sethi et al., 
2020) or use self- supervised methods (Rowe et al., 2021). Learned 
representations are high dimensional, data- driven descriptors and, 
unlike current acoustic indices, not based on human assumptions 
about links between soundscapes and ecology. These approaches 
are powerful, but there are some drawbacks. Firstly, existing meth-
ods are prone to over- fitting; it is not clear how well representations 
learned from one soundscape generalise to novel contexts (Sethi 
et al., 2023). Secondly, these methods are notoriously opaque, mak-
ing interpretation difficult (Rudin, 2019); future research should 
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take inspiration from the field of machine vision (e.g. Selvaraju et al., 
2017) to increase interpretability and provide insight into the basis 
of model predictions. Finally, training these models is generally 
energy intensive; ecoacoustics will benefit from advances in low- 
energy, embedded AI methods (e.g. Seng et al., 2021).

Such advances promise new insights into the ecological role of 
sound and the relationships between soundscape, biodiversity and 
ecosystem complexity and functioning. However, the development 
and application of all ecoacoustic methods can only proceed via 
well- designed data collection, careful analysis and considered in-
terpretation of results; many of the recommendations we offer for 
acoustic indices are just as relevant to these emerging methods.

12  |  CONCLUSIONS

Acoustic surveys in general and acoustic indices in particular have 
considerable potential for ecology. Yet, as with any methodology, this 
potential is balanced against inherent limitations. In a young discipline, 
such limitations have often been overlooked or misunderstood, and 
inappropriate application of acoustic indices weakens their poten-
tial, and undermines scientific advancement in the field. Given the 
climate and biodiversity crises, and the urgent need to accurately 
monitor changing environments, current acoustic indices— and future 
methods— could make substantial contributions to ecological research, 
conservation, restoration, and land management. This context further 
reinforces the need for scientifically rigorous use of acoustic indices, 
in order to advance our understanding of the relationships between 
ecological communities and soundscapes, and to underpin the robust 
development of future methods for research and application.
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